| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0cmn | Structured version Visualization version GIF version | ||
| Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrge0cmn | ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 2 | 1 | xrs1cmn 21372 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ CMnd |
| 3 | 1 | xrge0subm 21373 | . . 3 ⊢ (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 4 | xrex 13001 | . . . . . . 7 ⊢ ℝ* ∈ V | |
| 5 | 4 | difexi 5300 | . . . . . 6 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 6 | difss 4111 | . . . . . . . . 9 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 7 | xrsbas 21344 | . . . . . . . . . 10 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 8 | 1, 7 | ressbas2 17257 | . . . . . . . . 9 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞})))) |
| 9 | 6, 8 | ax-mp 5 | . . . . . . . 8 ⊢ (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 10 | 9 | submss 18785 | . . . . . . 7 ⊢ ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) → (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) |
| 11 | 3, 10 | ax-mp 5 | . . . . . 6 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 12 | ressabs 17267 | . . . . . 6 ⊢ (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞))) | |
| 13 | 5, 11, 12 | mp2an 692 | . . . . 5 ⊢ ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) |
| 14 | 13 | eqcomi 2744 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) |
| 15 | 14 | submmnd 18789 | . . 3 ⊢ ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) |
| 16 | 3, 15 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 17 | 14 | subcmn 19816 | . 2 ⊢ (((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ CMnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 18 | 2, 16, 17 | mp2an 692 | 1 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 ‘cfv 6530 (class class class)co 7403 0cc0 11127 +∞cpnf 11264 -∞cmnf 11265 ℝ*cxr 11266 [,]cicc 13363 Basecbs 17226 ↾s cress 17249 ℝ*𝑠cxrs 17512 Mndcmnd 18710 SubMndcsubmnd 18758 CMndccmn 19759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-xadd 13127 df-icc 13367 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-tset 17288 df-ple 17289 df-ds 17291 df-0g 17453 df-xrs 17514 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-cmn 19761 |
| This theorem is referenced by: xrge0gsumle 24771 xrge0tsms 24772 xrge00 32953 xrge0tsmsd 33002 xrge0omnd 33025 xrge0slmod 33309 xrge0iifmhm 33916 xrge0tmdALT 33923 esumcl 34007 esumgsum 34022 esum0 34026 esumf1o 34027 esumsplit 34030 esumadd 34034 gsumesum 34036 esumlub 34037 esumaddf 34038 esumsnf 34041 esumss 34049 esumpfinval 34052 esumpfinvalf 34053 esumcocn 34057 esum2d 34070 sitmcl 34329 gsumge0cl 46348 sge0tsms 46357 |
| Copyright terms: Public domain | W3C validator |