MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0cmn Structured version   Visualization version   GIF version

Theorem xrge0cmn 20405
Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
xrge0cmn (ℝ*𝑠s (0[,]+∞)) ∈ CMnd

Proof of Theorem xrge0cmn
StepHypRef Expression
1 eqid 2737 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1cmn 20403 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
31xrge0subm 20404 . . 3 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4 xrex 12583 . . . . . . 7 * ∈ V
54difexi 5221 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
6 difss 4046 . . . . . . . . 9 (ℝ* ∖ {-∞}) ⊆ ℝ*
7 xrsbas 20379 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
81, 7ressbas2 16791 . . . . . . . . 9 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
96, 8ax-mp 5 . . . . . . . 8 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
109submss 18236 . . . . . . 7 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (0[,]+∞) ⊆ (ℝ* ∖ {-∞}))
113, 10ax-mp 5 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
12 ressabs 16800 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
135, 11, 12mp2an 692 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
1413eqcomi 2746 . . . 4 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
1514submmnd 18240 . . 3 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
163, 15ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1714subcmn 19222 . 2 (((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
182, 16, 17mp2an 692 1 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  Vcvv 3408  cdif 3863  wss 3866  {csn 4541  cfv 6380  (class class class)co 7213  0cc0 10729  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866  [,]cicc 12938  Basecbs 16760  s cress 16784  *𝑠cxrs 17005  Mndcmnd 18173  SubMndcsubmnd 18217  CMndccmn 19170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-xadd 12705  df-icc 12942  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-tset 16821  df-ple 16822  df-ds 16824  df-0g 16946  df-xrs 17007  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-cmn 19172
This theorem is referenced by:  xrge0gsumle  23730  xrge0tsms  23731  xrge00  31014  xrge0tsmsd  31036  xrge0omnd  31056  xrge0slmod  31262  xrge0iifmhm  31603  xrge0tmdALT  31610  esumcl  31710  esumgsum  31725  esum0  31729  esumf1o  31730  esumsplit  31733  esumadd  31737  gsumesum  31739  esumlub  31740  esumaddf  31741  esumsnf  31744  esumss  31752  esumpfinval  31755  esumpfinvalf  31756  esumcocn  31760  esum2d  31773  sitmcl  32030  gsumge0cl  43584  sge0tsms  43593
  Copyright terms: Public domain W3C validator