MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0cmn Structured version   Visualization version   GIF version

Theorem xrge0cmn 20961
Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
xrge0cmn (ℝ*𝑠s (0[,]+∞)) ∈ CMnd

Proof of Theorem xrge0cmn
StepHypRef Expression
1 eqid 2733 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1cmn 20959 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
31xrge0subm 20960 . . 3 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4 xrex 12958 . . . . . . 7 * ∈ V
54difexi 5324 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
6 difss 4129 . . . . . . . . 9 (ℝ* ∖ {-∞}) ⊆ ℝ*
7 xrsbas 20935 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
81, 7ressbas2 17169 . . . . . . . . 9 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
96, 8ax-mp 5 . . . . . . . 8 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
109submss 18677 . . . . . . 7 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (0[,]+∞) ⊆ (ℝ* ∖ {-∞}))
113, 10ax-mp 5 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
12 ressabs 17181 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
135, 11, 12mp2an 691 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
1413eqcomi 2742 . . . 4 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
1514submmnd 18681 . . 3 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
163, 15ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1714subcmn 19688 . 2 (((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
182, 16, 17mp2an 691 1 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3475  cdif 3943  wss 3946  {csn 4624  cfv 6535  (class class class)co 7396  0cc0 11097  +∞cpnf 11232  -∞cmnf 11233  *cxr 11234  [,]cicc 13314  Basecbs 17131  s cress 17160  *𝑠cxrs 17433  Mndcmnd 18612  SubMndcsubmnd 18657  CMndccmn 19632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-xadd 13080  df-icc 13318  df-fz 13472  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-tset 17203  df-ple 17204  df-ds 17206  df-0g 17374  df-xrs 17435  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-submnd 18659  df-cmn 19634
This theorem is referenced by:  xrge0gsumle  24318  xrge0tsms  24319  xrge00  32158  xrge0tsmsd  32180  xrge0omnd  32200  xrge0slmod  32425  xrge0iifmhm  32850  xrge0tmdALT  32857  esumcl  32959  esumgsum  32974  esum0  32978  esumf1o  32979  esumsplit  32982  esumadd  32986  gsumesum  32988  esumlub  32989  esumaddf  32990  esumsnf  32993  esumss  33001  esumpfinval  33004  esumpfinvalf  33005  esumcocn  33009  esum2d  33022  sitmcl  33281  gsumge0cl  44960  sge0tsms  44969
  Copyright terms: Public domain W3C validator