MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0cmn Structured version   Visualization version   GIF version

Theorem xrge0cmn 20133
Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
xrge0cmn (ℝ*𝑠s (0[,]+∞)) ∈ CMnd

Proof of Theorem xrge0cmn
StepHypRef Expression
1 eqid 2798 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1cmn 20131 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd
31xrge0subm 20132 . . 3 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
4 xrex 12374 . . . . . . 7 * ∈ V
54difexi 5196 . . . . . 6 (ℝ* ∖ {-∞}) ∈ V
6 difss 4059 . . . . . . . . 9 (ℝ* ∖ {-∞}) ⊆ ℝ*
7 xrsbas 20107 . . . . . . . . . 10 * = (Base‘ℝ*𝑠)
81, 7ressbas2 16547 . . . . . . . . 9 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
96, 8ax-mp 5 . . . . . . . 8 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
109submss 17966 . . . . . . 7 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (0[,]+∞) ⊆ (ℝ* ∖ {-∞}))
113, 10ax-mp 5 . . . . . 6 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
12 ressabs 16555 . . . . . 6 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
135, 11, 12mp2an 691 . . . . 5 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
1413eqcomi 2807 . . . 4 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
1514submmnd 17970 . . 3 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
163, 15ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1714subcmn 18950 . 2 (((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ CMnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
182, 16, 17mp2an 691 1 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663  [,]cicc 12729  Basecbs 16475  s cress 16476  *𝑠cxrs 16765  Mndcmnd 17903  SubMndcsubmnd 17947  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-icc 12733  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-xrs 16767  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-cmn 18900
This theorem is referenced by:  xrge0gsumle  23438  xrge0tsms  23439  xrge00  30720  xrge0tsmsd  30742  xrge0omnd  30762  xrge0slmod  30968  xrge0iifmhm  31292  xrge0tmdALT  31299  esumcl  31399  esumgsum  31414  esum0  31418  esumf1o  31419  esumsplit  31422  esumadd  31426  gsumesum  31428  esumlub  31429  esumaddf  31430  esumsnf  31433  esumss  31441  esumpfinval  31444  esumpfinvalf  31445  esumcocn  31449  esum2d  31462  sitmcl  31719  gsumge0cl  43010  sge0tsms  43019
  Copyright terms: Public domain W3C validator