| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrs10 | Structured version Visualization version GIF version | ||
| Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrs10 | ⊢ 0 = (0g‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4099 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 3 | xrsbas 21295 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 4 | 2, 3 | ressbas2 17208 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
| 6 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | xrex 12946 | . . . . 5 ⊢ ℝ* ∈ V | |
| 8 | 7 | difexi 5285 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 9 | xrsadd 21296 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 10 | 2, 9 | ressplusg 17254 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 11 | 8, 10 | ax-mp 5 | . . 3 ⊢ +𝑒 = (+g‘𝑅) |
| 12 | 0re 11176 | . . . 4 ⊢ 0 ∈ ℝ | |
| 13 | rexr 11220 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
| 14 | renemnf 11223 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 15 | eldifsn 4750 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
| 16 | 13, 14, 15 | sylanbrc 583 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
| 17 | 12, 16 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
| 18 | eldifi 4094 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
| 20 | xaddlid 13202 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
| 21 | 19, 20 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
| 22 | 19 | xaddridd 13203 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
| 23 | 5, 6, 11, 17, 21, 22 | ismgmid2 18595 | . 2 ⊢ (⊤ → 0 = (0g‘𝑅)) |
| 24 | 23 | mptru 1547 | 1 ⊢ 0 = (0g‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 -∞cmnf 11206 ℝ*cxr 11207 +𝑒 cxad 13070 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 0gc0g 17402 ℝ*𝑠cxrs 17463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-xadd 13073 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-xrs 17465 |
| This theorem is referenced by: xrge0subm 21324 imasdsf1olem 24261 xrge0gsumle 24722 xrge0tsms 24723 xrge00 32953 xrge0tsmsd 33002 gsumge0cl 46369 |
| Copyright terms: Public domain | W3C validator |