MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs10 Structured version   Visualization version   GIF version

Theorem xrs10 21337
Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs10 0 = (0g𝑅)

Proof of Theorem xrs10
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 4130 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 21310 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17217 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4ax-mp 5 . . 3 (ℝ* ∖ {-∞}) = (Base‘𝑅)
6 eqid 2728 . . 3 (0g𝑅) = (0g𝑅)
7 xrex 13001 . . . . 5 * ∈ V
87difexi 5330 . . . 4 (ℝ* ∖ {-∞}) ∈ V
9 xrsadd 21311 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
102, 9ressplusg 17270 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
118, 10ax-mp 5 . . 3 +𝑒 = (+g𝑅)
12 0re 11246 . . . 4 0 ∈ ℝ
13 rexr 11290 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
14 renemnf 11293 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
15 eldifsn 4791 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
1613, 14, 15sylanbrc 582 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
1712, 16mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
18 eldifi 4125 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
1918adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
20 xaddlid 13253 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
2119, 20syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
2219xaddridd 13254 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
235, 6, 11, 17, 21, 22ismgmid2 18627 . 2 (⊤ → 0 = (0g𝑅))
2423mptru 1541 1 0 = (0g𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wtru 1535  wcel 2099  wne 2937  Vcvv 3471  cdif 3944  wss 3947  {csn 4629  cfv 6548  (class class class)co 7420  cr 11137  0cc0 11138  -∞cmnf 11276  *cxr 11277   +𝑒 cxad 13122  Basecbs 17179  s cress 17208  +gcplusg 17232  0gc0g 17420  *𝑠cxrs 17481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-xadd 13125  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-tset 17251  df-ple 17252  df-ds 17254  df-0g 17422  df-xrs 17483
This theorem is referenced by:  xrge0subm  21339  imasdsf1olem  24278  xrge0gsumle  24748  xrge0tsms  24749  xrge00  32742  xrge0tsmsd  32771  gsumge0cl  45759
  Copyright terms: Public domain W3C validator