| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrs10 | Structured version Visualization version GIF version | ||
| Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrs10 | ⊢ 0 = (0g‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4111 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 3 | xrsbas 21344 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 4 | 2, 3 | ressbas2 17257 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
| 6 | eqid 2735 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | xrex 13001 | . . . . 5 ⊢ ℝ* ∈ V | |
| 8 | 7 | difexi 5300 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 9 | xrsadd 21345 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 10 | 2, 9 | ressplusg 17303 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 11 | 8, 10 | ax-mp 5 | . . 3 ⊢ +𝑒 = (+g‘𝑅) |
| 12 | 0re 11235 | . . . 4 ⊢ 0 ∈ ℝ | |
| 13 | rexr 11279 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
| 14 | renemnf 11282 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 15 | eldifsn 4762 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
| 16 | 13, 14, 15 | sylanbrc 583 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
| 17 | 12, 16 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
| 18 | eldifi 4106 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
| 20 | xaddlid 13256 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
| 21 | 19, 20 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
| 22 | 19 | xaddridd 13257 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
| 23 | 5, 6, 11, 17, 21, 22 | ismgmid2 18644 | . 2 ⊢ (⊤ → 0 = (0g‘𝑅)) |
| 24 | 23 | mptru 1547 | 1 ⊢ 0 = (0g‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 {csn 4601 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 -∞cmnf 11265 ℝ*cxr 11266 +𝑒 cxad 13124 Basecbs 17226 ↾s cress 17249 +gcplusg 17269 0gc0g 17451 ℝ*𝑠cxrs 17512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-xadd 13127 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-tset 17288 df-ple 17289 df-ds 17291 df-0g 17453 df-xrs 17514 |
| This theorem is referenced by: xrge0subm 21373 imasdsf1olem 24310 xrge0gsumle 24771 xrge0tsms 24772 xrge00 32953 xrge0tsmsd 33002 gsumge0cl 46348 |
| Copyright terms: Public domain | W3C validator |