MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs10 Structured version   Visualization version   GIF version

Theorem xrs10 20720
Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs10 0 = (0g𝑅)

Proof of Theorem xrs10
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 difss 4077 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 20697 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 17026 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4ax-mp 5 . . 3 (ℝ* ∖ {-∞}) = (Base‘𝑅)
6 eqid 2737 . . 3 (0g𝑅) = (0g𝑅)
7 xrex 12807 . . . . 5 * ∈ V
87difexi 5267 . . . 4 (ℝ* ∖ {-∞}) ∈ V
9 xrsadd 20698 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
102, 9ressplusg 17077 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
118, 10ax-mp 5 . . 3 +𝑒 = (+g𝑅)
12 0re 11057 . . . 4 0 ∈ ℝ
13 rexr 11101 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
14 renemnf 11104 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
15 eldifsn 4732 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
1613, 14, 15sylanbrc 583 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
1712, 16mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
18 eldifi 4072 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
1918adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
20 xaddid2 13056 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
2119, 20syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
2219xaddid1d 13057 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
235, 6, 11, 17, 21, 22ismgmid2 18429 . 2 (⊤ → 0 = (0g𝑅))
2423mptru 1547 1 0 = (0g𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1540  wtru 1541  wcel 2105  wne 2941  Vcvv 3441  cdif 3894  wss 3897  {csn 4571  cfv 6466  (class class class)co 7317  cr 10950  0cc0 10951  -∞cmnf 11087  *cxr 11088   +𝑒 cxad 12926  Basecbs 16989  s cress 17018  +gcplusg 17039  0gc0g 17227  *𝑠cxrs 17288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-xadd 12929  df-fz 13320  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-tset 17058  df-ple 17059  df-ds 17061  df-0g 17229  df-xrs 17290
This theorem is referenced by:  xrge0subm  20722  imasdsf1olem  23609  xrge0gsumle  24079  xrge0tsms  24080  xrge00  31430  xrge0tsmsd  31452  gsumge0cl  44160
  Copyright terms: Public domain W3C validator