![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrs10 | Structured version Visualization version GIF version |
Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrs10 | ⊢ 0 = (0g‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4096 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
3 | xrsbas 20829 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
4 | 2, 3 | ressbas2 17127 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
6 | eqid 2737 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | xrex 12919 | . . . . 5 ⊢ ℝ* ∈ V | |
8 | 7 | difexi 5290 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
9 | xrsadd 20830 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
10 | 2, 9 | ressplusg 17178 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
11 | 8, 10 | ax-mp 5 | . . 3 ⊢ +𝑒 = (+g‘𝑅) |
12 | 0re 11164 | . . . 4 ⊢ 0 ∈ ℝ | |
13 | rexr 11208 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
14 | renemnf 11211 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
15 | eldifsn 4752 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
16 | 13, 14, 15 | sylanbrc 584 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
17 | 12, 16 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
18 | eldifi 4091 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
19 | 18 | adantl 483 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
20 | xaddid2 13168 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
21 | 19, 20 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
22 | 19 | xaddid1d 13169 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
23 | 5, 6, 11, 17, 21, 22 | ismgmid2 18530 | . 2 ⊢ (⊤ → 0 = (0g‘𝑅)) |
24 | 23 | mptru 1549 | 1 ⊢ 0 = (0g‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 ≠ wne 2944 Vcvv 3448 ∖ cdif 3912 ⊆ wss 3915 {csn 4591 ‘cfv 6501 (class class class)co 7362 ℝcr 11057 0cc0 11058 -∞cmnf 11194 ℝ*cxr 11195 +𝑒 cxad 13038 Basecbs 17090 ↾s cress 17119 +gcplusg 17140 0gc0g 17328 ℝ*𝑠cxrs 17389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-uz 12771 df-xadd 13041 df-fz 13432 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-tset 17159 df-ple 17160 df-ds 17162 df-0g 17330 df-xrs 17391 |
This theorem is referenced by: xrge0subm 20854 imasdsf1olem 23742 xrge0gsumle 24212 xrge0tsms 24213 xrge00 31919 xrge0tsmsd 31941 gsumge0cl 44686 |
Copyright terms: Public domain | W3C validator |