MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuplt Structured version   Visualization version   GIF version

Theorem limsuplt 15525
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuplt ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝑗,𝑘,𝐹   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem limsuplt
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsuple 15524 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
32notbid 318 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
4 rexnal 3106 . . 3 (∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗))
53, 4bitr4di 289 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗)))
6 simp2 1137 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
7 reex 11275 . . . . . . 7 ℝ ∈ V
87ssex 5339 . . . . . 6 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
983ad2ant1 1133 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐵 ∈ V)
10 xrex 13052 . . . . . 6 * ∈ V
1110a1i 11 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ℝ* ∈ V)
12 fex2 7974 . . . . 5 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
136, 9, 11, 12syl3anc 1371 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹 ∈ V)
14 limsupcl 15519 . . . 4 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
1513, 14syl 17 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (lim sup‘𝐹) ∈ ℝ*)
16 simp3 1138 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
17 xrltnle 11357 . . 3 (((lim sup‘𝐹) ∈ ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹)))
1815, 16, 17syl2anc 583 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹)))
191limsupgf 15521 . . . . 5 𝐺:ℝ⟶ℝ*
2019ffvelcdmi 7117 . . . 4 (𝑗 ∈ ℝ → (𝐺𝑗) ∈ ℝ*)
21 xrltnle 11357 . . . 4 (((𝐺𝑗) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐺𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺𝑗)))
2220, 16, 21syl2anr 596 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) ∧ 𝑗 ∈ ℝ) → ((𝐺𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺𝑗)))
2322rexbidva 3183 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴 ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗)))
245, 18, 233bitr4d 311 1 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-limsup 15517
This theorem is referenced by:  limsupgre  15527  limsuplt2  45674
  Copyright terms: Public domain W3C validator