MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuplt Structured version   Visualization version   GIF version

Theorem limsuplt 14550
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuplt ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝑗,𝑘,𝐹   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem limsuplt
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsuple 14549 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
32notbid 310 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
4 rexnal 3176 . . 3 (∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗))
53, 4syl6bbr 281 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗)))
6 simp2 1168 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
7 reex 10316 . . . . . . 7 ℝ ∈ V
87ssex 4998 . . . . . 6 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
983ad2ant1 1164 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐵 ∈ V)
10 xrex 12070 . . . . . 6 * ∈ V
1110a1i 11 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ℝ* ∈ V)
12 fex2 7357 . . . . 5 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
136, 9, 11, 12syl3anc 1491 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹 ∈ V)
14 limsupcl 14544 . . . 4 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
1513, 14syl 17 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (lim sup‘𝐹) ∈ ℝ*)
16 simp3 1169 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
17 xrltnle 10396 . . 3 (((lim sup‘𝐹) ∈ ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹)))
1815, 16, 17syl2anc 580 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹)))
191limsupgf 14546 . . . . 5 𝐺:ℝ⟶ℝ*
2019ffvelrni 6585 . . . 4 (𝑗 ∈ ℝ → (𝐺𝑗) ∈ ℝ*)
21 xrltnle 10396 . . . 4 (((𝐺𝑗) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐺𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺𝑗)))
2220, 16, 21syl2anr 591 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) ∧ 𝑗 ∈ ℝ) → ((𝐺𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺𝑗)))
2322rexbidva 3231 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴 ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗)))
245, 18, 233bitr4d 303 1 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  w3a 1108   = wceq 1653  wcel 2157  wral 3090  wrex 3091  Vcvv 3386  cin 3769  wss 3770   class class class wbr 4844  cmpt 4923  cima 5316  wf 6098  cfv 6102  (class class class)co 6879  supcsup 8589  cr 10224  +∞cpnf 10361  *cxr 10363   < clt 10364  cle 10365  [,)cico 12425  lim supclsp 14541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-po 5234  df-so 5235  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-sup 8591  df-inf 8592  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-limsup 14542
This theorem is referenced by:  limsupgre  14552  limsuplt2  40724
  Copyright terms: Public domain W3C validator