![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuplt | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) |
Ref | Expression |
---|---|
limsuplt | β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval.1 | . . . . 5 β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) | |
2 | 1 | limsuple 15454 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β βπ β β π΄ β€ (πΊβπ))) |
3 | 2 | notbid 318 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (Β¬ π΄ β€ (lim supβπΉ) β Β¬ βπ β β π΄ β€ (πΊβπ))) |
4 | rexnal 3097 | . . 3 β’ (βπ β β Β¬ π΄ β€ (πΊβπ) β Β¬ βπ β β π΄ β€ (πΊβπ)) | |
5 | 3, 4 | bitr4di 289 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (Β¬ π΄ β€ (lim supβπΉ) β βπ β β Β¬ π΄ β€ (πΊβπ))) |
6 | simp2 1135 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ:π΅βΆβ*) | |
7 | reex 11229 | . . . . . . 7 β’ β β V | |
8 | 7 | ssex 5321 | . . . . . 6 β’ (π΅ β β β π΅ β V) |
9 | 8 | 3ad2ant1 1131 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΅ β V) |
10 | xrex 13001 | . . . . . 6 β’ β* β V | |
11 | 10 | a1i 11 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β β* β V) |
12 | fex2 7941 | . . . . 5 β’ ((πΉ:π΅βΆβ* β§ π΅ β V β§ β* β V) β πΉ β V) | |
13 | 6, 9, 11, 12 | syl3anc 1369 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ β V) |
14 | limsupcl 15449 | . . . 4 β’ (πΉ β V β (lim supβπΉ) β β*) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (lim supβπΉ) β β*) |
16 | simp3 1136 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΄ β β*) | |
17 | xrltnle 11311 | . . 3 β’ (((lim supβπΉ) β β* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β Β¬ π΄ β€ (lim supβπΉ))) | |
18 | 15, 16, 17 | syl2anc 583 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β Β¬ π΄ β€ (lim supβπΉ))) |
19 | 1 | limsupgf 15451 | . . . . 5 β’ πΊ:ββΆβ* |
20 | 19 | ffvelcdmi 7093 | . . . 4 β’ (π β β β (πΊβπ) β β*) |
21 | xrltnle 11311 | . . . 4 β’ (((πΊβπ) β β* β§ π΄ β β*) β ((πΊβπ) < π΄ β Β¬ π΄ β€ (πΊβπ))) | |
22 | 20, 16, 21 | syl2anr 596 | . . 3 β’ (((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β§ π β β) β ((πΊβπ) < π΄ β Β¬ π΄ β€ (πΊβπ))) |
23 | 22 | rexbidva 3173 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (βπ β β (πΊβπ) < π΄ β βπ β β Β¬ π΄ β€ (πΊβπ))) |
24 | 5, 18, 23 | 3bitr4d 311 | 1 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ w3a 1085 = wceq 1534 β wcel 2099 βwral 3058 βwrex 3067 Vcvv 3471 β© cin 3946 β wss 3947 class class class wbr 5148 β¦ cmpt 5231 β cima 5681 βΆwf 6544 βcfv 6548 (class class class)co 7420 supcsup 9463 βcr 11137 +βcpnf 11275 β*cxr 11277 < clt 11278 β€ cle 11279 [,)cico 13358 lim supclsp 15446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-limsup 15447 |
This theorem is referenced by: limsupgre 15457 limsuplt2 45141 |
Copyright terms: Public domain | W3C validator |