MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuplt Structured version   Visualization version   GIF version

Theorem limsuplt 15188
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuplt ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝑗,𝑘,𝐹   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem limsuplt
StepHypRef Expression
1 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
21limsuple 15187 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
32notbid 318 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
4 rexnal 3169 . . 3 (∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗))
53, 4bitr4di 289 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗)))
6 simp2 1136 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
7 reex 10962 . . . . . . 7 ℝ ∈ V
87ssex 5245 . . . . . 6 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
983ad2ant1 1132 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐵 ∈ V)
10 xrex 12727 . . . . . 6 * ∈ V
1110a1i 11 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ℝ* ∈ V)
12 fex2 7780 . . . . 5 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
136, 9, 11, 12syl3anc 1370 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹 ∈ V)
14 limsupcl 15182 . . . 4 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
1513, 14syl 17 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (lim sup‘𝐹) ∈ ℝ*)
16 simp3 1137 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
17 xrltnle 11042 . . 3 (((lim sup‘𝐹) ∈ ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹)))
1815, 16, 17syl2anc 584 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹)))
191limsupgf 15184 . . . . 5 𝐺:ℝ⟶ℝ*
2019ffvelrni 6960 . . . 4 (𝑗 ∈ ℝ → (𝐺𝑗) ∈ ℝ*)
21 xrltnle 11042 . . . 4 (((𝐺𝑗) ∈ ℝ*𝐴 ∈ ℝ*) → ((𝐺𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺𝑗)))
2220, 16, 21syl2anr 597 . . 3 (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) ∧ 𝑗 ∈ ℝ) → ((𝐺𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺𝑗)))
2322rexbidva 3225 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴 ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺𝑗)))
245, 18, 233bitr4d 311 1 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺𝑗) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887   class class class wbr 5074  cmpt 5157  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  supcsup 9199  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-limsup 15180
This theorem is referenced by:  limsupgre  15190  limsuplt2  43294
  Copyright terms: Public domain W3C validator