![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuplt | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) |
Ref | Expression |
---|---|
limsuplt | β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval.1 | . . . . 5 β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) | |
2 | 1 | limsuple 15422 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β βπ β β π΄ β€ (πΊβπ))) |
3 | 2 | notbid 318 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (Β¬ π΄ β€ (lim supβπΉ) β Β¬ βπ β β π΄ β€ (πΊβπ))) |
4 | rexnal 3101 | . . 3 β’ (βπ β β Β¬ π΄ β€ (πΊβπ) β Β¬ βπ β β π΄ β€ (πΊβπ)) | |
5 | 3, 4 | bitr4di 289 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (Β¬ π΄ β€ (lim supβπΉ) β βπ β β Β¬ π΄ β€ (πΊβπ))) |
6 | simp2 1138 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ:π΅βΆβ*) | |
7 | reex 11201 | . . . . . . 7 β’ β β V | |
8 | 7 | ssex 5322 | . . . . . 6 β’ (π΅ β β β π΅ β V) |
9 | 8 | 3ad2ant1 1134 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΅ β V) |
10 | xrex 12971 | . . . . . 6 β’ β* β V | |
11 | 10 | a1i 11 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β β* β V) |
12 | fex2 7924 | . . . . 5 β’ ((πΉ:π΅βΆβ* β§ π΅ β V β§ β* β V) β πΉ β V) | |
13 | 6, 9, 11, 12 | syl3anc 1372 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ β V) |
14 | limsupcl 15417 | . . . 4 β’ (πΉ β V β (lim supβπΉ) β β*) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (lim supβπΉ) β β*) |
16 | simp3 1139 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΄ β β*) | |
17 | xrltnle 11281 | . . 3 β’ (((lim supβπΉ) β β* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β Β¬ π΄ β€ (lim supβπΉ))) | |
18 | 15, 16, 17 | syl2anc 585 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β Β¬ π΄ β€ (lim supβπΉ))) |
19 | 1 | limsupgf 15419 | . . . . 5 β’ πΊ:ββΆβ* |
20 | 19 | ffvelcdmi 7086 | . . . 4 β’ (π β β β (πΊβπ) β β*) |
21 | xrltnle 11281 | . . . 4 β’ (((πΊβπ) β β* β§ π΄ β β*) β ((πΊβπ) < π΄ β Β¬ π΄ β€ (πΊβπ))) | |
22 | 20, 16, 21 | syl2anr 598 | . . 3 β’ (((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β§ π β β) β ((πΊβπ) < π΄ β Β¬ π΄ β€ (πΊβπ))) |
23 | 22 | rexbidva 3177 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (βπ β β (πΊβπ) < π΄ β βπ β β Β¬ π΄ β€ (πΊβπ))) |
24 | 5, 18, 23 | 3bitr4d 311 | 1 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 Vcvv 3475 β© cin 3948 β wss 3949 class class class wbr 5149 β¦ cmpt 5232 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7409 supcsup 9435 βcr 11109 +βcpnf 11245 β*cxr 11247 < clt 11248 β€ cle 11249 [,)cico 13326 lim supclsp 15414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-limsup 15415 |
This theorem is referenced by: limsupgre 15425 limsuplt2 44469 |
Copyright terms: Public domain | W3C validator |