![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuplt | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsuplt | ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval.1 | . . . . 5 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
2 | 1 | limsuple 15524 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
3 | 2 | notbid 318 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
4 | rexnal 3106 | . . 3 ⊢ (∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺‘𝑗) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗)) | |
5 | 3, 4 | bitr4di 289 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺‘𝑗))) |
6 | simp2 1137 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*) | |
7 | reex 11275 | . . . . . . 7 ⊢ ℝ ∈ V | |
8 | 7 | ssex 5339 | . . . . . 6 ⊢ (𝐵 ⊆ ℝ → 𝐵 ∈ V) |
9 | 8 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐵 ∈ V) |
10 | xrex 13052 | . . . . . 6 ⊢ ℝ* ∈ V | |
11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ℝ* ∈ V) |
12 | fex2 7974 | . . . . 5 ⊢ ((𝐹:𝐵⟶ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V) | |
13 | 6, 9, 11, 12 | syl3anc 1371 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ V) |
14 | limsupcl 15519 | . . . 4 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (lim sup‘𝐹) ∈ ℝ*) |
16 | simp3 1138 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
17 | xrltnle 11357 | . . 3 ⊢ (((lim sup‘𝐹) ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹))) | |
18 | 15, 16, 17 | syl2anc 583 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹))) |
19 | 1 | limsupgf 15521 | . . . . 5 ⊢ 𝐺:ℝ⟶ℝ* |
20 | 19 | ffvelcdmi 7117 | . . . 4 ⊢ (𝑗 ∈ ℝ → (𝐺‘𝑗) ∈ ℝ*) |
21 | xrltnle 11357 | . . . 4 ⊢ (((𝐺‘𝑗) ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((𝐺‘𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺‘𝑗))) | |
22 | 20, 16, 21 | syl2anr 596 | . . 3 ⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) ∧ 𝑗 ∈ ℝ) → ((𝐺‘𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺‘𝑗))) |
23 | 22 | rexbidva 3183 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴 ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺‘𝑗))) |
24 | 5, 18, 23 | 3bitr4d 311 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-limsup 15517 |
This theorem is referenced by: limsupgre 15527 limsuplt2 45674 |
Copyright terms: Public domain | W3C validator |