![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuplt | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) |
Ref | Expression |
---|---|
limsuplt | β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval.1 | . . . . 5 β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) | |
2 | 1 | limsuple 15424 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β βπ β β π΄ β€ (πΊβπ))) |
3 | 2 | notbid 318 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (Β¬ π΄ β€ (lim supβπΉ) β Β¬ βπ β β π΄ β€ (πΊβπ))) |
4 | rexnal 3092 | . . 3 β’ (βπ β β Β¬ π΄ β€ (πΊβπ) β Β¬ βπ β β π΄ β€ (πΊβπ)) | |
5 | 3, 4 | bitr4di 289 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (Β¬ π΄ β€ (lim supβπΉ) β βπ β β Β¬ π΄ β€ (πΊβπ))) |
6 | simp2 1134 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ:π΅βΆβ*) | |
7 | reex 11198 | . . . . . . 7 β’ β β V | |
8 | 7 | ssex 5312 | . . . . . 6 β’ (π΅ β β β π΅ β V) |
9 | 8 | 3ad2ant1 1130 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΅ β V) |
10 | xrex 12970 | . . . . . 6 β’ β* β V | |
11 | 10 | a1i 11 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β β* β V) |
12 | fex2 7918 | . . . . 5 β’ ((πΉ:π΅βΆβ* β§ π΅ β V β§ β* β V) β πΉ β V) | |
13 | 6, 9, 11, 12 | syl3anc 1368 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ β V) |
14 | limsupcl 15419 | . . . 4 β’ (πΉ β V β (lim supβπΉ) β β*) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (lim supβπΉ) β β*) |
16 | simp3 1135 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΄ β β*) | |
17 | xrltnle 11280 | . . 3 β’ (((lim supβπΉ) β β* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β Β¬ π΄ β€ (lim supβπΉ))) | |
18 | 15, 16, 17 | syl2anc 583 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β Β¬ π΄ β€ (lim supβπΉ))) |
19 | 1 | limsupgf 15421 | . . . . 5 β’ πΊ:ββΆβ* |
20 | 19 | ffvelcdmi 7076 | . . . 4 β’ (π β β β (πΊβπ) β β*) |
21 | xrltnle 11280 | . . . 4 β’ (((πΊβπ) β β* β§ π΄ β β*) β ((πΊβπ) < π΄ β Β¬ π΄ β€ (πΊβπ))) | |
22 | 20, 16, 21 | syl2anr 596 | . . 3 β’ (((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β§ π β β) β ((πΊβπ) < π΄ β Β¬ π΄ β€ (πΊβπ))) |
23 | 22 | rexbidva 3168 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (βπ β β (πΊβπ) < π΄ β βπ β β Β¬ π΄ β€ (πΊβπ))) |
24 | 5, 18, 23 | 3bitr4d 311 | 1 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β ((lim supβπΉ) < π΄ β βπ β β (πΊβπ) < π΄)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3053 βwrex 3062 Vcvv 3466 β© cin 3940 β wss 3941 class class class wbr 5139 β¦ cmpt 5222 β cima 5670 βΆwf 6530 βcfv 6534 (class class class)co 7402 supcsup 9432 βcr 11106 +βcpnf 11244 β*cxr 11246 < clt 11247 β€ cle 11248 [,)cico 13327 lim supclsp 15416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-limsup 15417 |
This theorem is referenced by: limsupgre 15427 limsuplt2 45014 |
Copyright terms: Public domain | W3C validator |