![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuplt | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsuplt | ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupval.1 | . . . . 5 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
2 | 1 | limsuple 15475 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
3 | 2 | notbid 317 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
4 | rexnal 3089 | . . 3 ⊢ (∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺‘𝑗) ↔ ¬ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗)) | |
5 | 3, 4 | bitr4di 288 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (¬ 𝐴 ≤ (lim sup‘𝐹) ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺‘𝑗))) |
6 | simp2 1134 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*) | |
7 | reex 11245 | . . . . . . 7 ⊢ ℝ ∈ V | |
8 | 7 | ssex 5325 | . . . . . 6 ⊢ (𝐵 ⊆ ℝ → 𝐵 ∈ V) |
9 | 8 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐵 ∈ V) |
10 | xrex 13018 | . . . . . 6 ⊢ ℝ* ∈ V | |
11 | 10 | a1i 11 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ℝ* ∈ V) |
12 | fex2 7946 | . . . . 5 ⊢ ((𝐹:𝐵⟶ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V) | |
13 | 6, 9, 11, 12 | syl3anc 1368 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ V) |
14 | limsupcl 15470 | . . . 4 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (lim sup‘𝐹) ∈ ℝ*) |
16 | simp3 1135 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
17 | xrltnle 11327 | . . 3 ⊢ (((lim sup‘𝐹) ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹))) | |
18 | 15, 16, 17 | syl2anc 582 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ¬ 𝐴 ≤ (lim sup‘𝐹))) |
19 | 1 | limsupgf 15472 | . . . . 5 ⊢ 𝐺:ℝ⟶ℝ* |
20 | 19 | ffvelcdmi 7096 | . . . 4 ⊢ (𝑗 ∈ ℝ → (𝐺‘𝑗) ∈ ℝ*) |
21 | xrltnle 11327 | . . . 4 ⊢ (((𝐺‘𝑗) ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → ((𝐺‘𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺‘𝑗))) | |
22 | 20, 16, 21 | syl2anr 595 | . . 3 ⊢ (((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) ∧ 𝑗 ∈ ℝ) → ((𝐺‘𝑗) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐺‘𝑗))) |
23 | 22 | rexbidva 3166 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴 ↔ ∃𝑗 ∈ ℝ ¬ 𝐴 ≤ (𝐺‘𝑗))) |
24 | 5, 18, 23 | 3bitr4d 310 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ((lim sup‘𝐹) < 𝐴 ↔ ∃𝑗 ∈ ℝ (𝐺‘𝑗) < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 Vcvv 3461 ∩ cin 3945 ⊆ wss 3946 class class class wbr 5152 ↦ cmpt 5235 “ cima 5684 ⟶wf 6549 ‘cfv 6553 (class class class)co 7423 supcsup 9479 ℝcr 11153 +∞cpnf 11291 ℝ*cxr 11293 < clt 11294 ≤ cle 11295 [,)cico 13375 lim supclsp 15467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-sup 9481 df-inf 9482 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-limsup 15468 |
This theorem is referenced by: limsupgre 15478 limsuplt2 45311 |
Copyright terms: Public domain | W3C validator |