| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0subm | Structured version Visualization version GIF version | ||
| Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrge0subm | ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*) | |
| 2 | ge0nemnf 13140 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) |
| 4 | elxrge0 13425 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
| 5 | eldifsn 4753 | . . . 4 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞})) |
| 7 | 6 | ssriv 3953 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 8 | 0e0iccpnf 13427 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 9 | ge0xaddcl 13430 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞)) | |
| 10 | 9 | rgen2 3178 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞) |
| 11 | xrs1mnd.1 | . . . 4 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 12 | 11 | xrs1mnd 21328 | . . 3 ⊢ 𝑅 ∈ Mnd |
| 13 | difss 4102 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 14 | xrsbas 21302 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 15 | 11, 14 | ressbas2 17215 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 16 | 13, 15 | ax-mp 5 | . . . 4 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
| 17 | 11 | xrs10 21329 | . . . 4 ⊢ 0 = (0g‘𝑅) |
| 18 | xrex 12953 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 19 | 18 | difexi 5288 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 20 | xrsadd 21303 | . . . . . 6 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 21 | 11, 20 | ressplusg 17261 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ +𝑒 = (+g‘𝑅) |
| 23 | 16, 17, 22 | issubm 18737 | . . 3 ⊢ (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))) |
| 24 | 12, 23 | ax-mp 5 | . 2 ⊢ ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))) |
| 25 | 7, 8, 10, 24 | mpbir3an 1342 | 1 ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 ≤ cle 11216 +𝑒 cxad 13077 [,]cicc 13316 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 ℝ*𝑠cxrs 17470 Mndcmnd 18668 SubMndcsubmnd 18716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-xadd 13080 df-icc 13320 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-xrs 17472 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 |
| This theorem is referenced by: xrge0cmn 21332 xrge0gsumle 24729 xrge0tsms 24730 xrge0tsmsd 33009 |
| Copyright terms: Public domain | W3C validator |