| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0subm | Structured version Visualization version GIF version | ||
| Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrge0subm | ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*) | |
| 2 | ge0nemnf 13079 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) |
| 4 | elxrge0 13364 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
| 5 | eldifsn 4739 | . . . 4 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞})) |
| 7 | 6 | ssriv 3934 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 8 | 0e0iccpnf 13366 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 9 | ge0xaddcl 13369 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞)) | |
| 10 | 9 | rgen2 3173 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞) |
| 11 | xrs1mnd.1 | . . . 4 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 12 | 11 | xrs1mnd 21386 | . . 3 ⊢ 𝑅 ∈ Mnd |
| 13 | difss 4085 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 14 | xrsbas 17518 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 15 | 11, 14 | ressbas2 17156 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 16 | 13, 15 | ax-mp 5 | . . . 4 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
| 17 | 11 | xrs10 21387 | . . . 4 ⊢ 0 = (0g‘𝑅) |
| 18 | xrex 12891 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 19 | 18 | difexi 5272 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 20 | xrsadd 21331 | . . . . . 6 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 21 | 11, 20 | ressplusg 17202 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ +𝑒 = (+g‘𝑅) |
| 23 | 16, 17, 22 | issubm 18719 | . . 3 ⊢ (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))) |
| 24 | 12, 23 | ax-mp 5 | . 2 ⊢ ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))) |
| 25 | 7, 8, 10, 24 | mpbir3an 1342 | 1 ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 0cc0 11017 +∞cpnf 11154 -∞cmnf 11155 ℝ*cxr 11156 ≤ cle 11158 +𝑒 cxad 13015 [,]cicc 13255 Basecbs 17127 ↾s cress 17148 +gcplusg 17168 ℝ*𝑠cxrs 17412 Mndcmnd 18650 SubMndcsubmnd 18698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-xadd 13018 df-icc 13259 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-tset 17187 df-ple 17188 df-ds 17190 df-0g 17352 df-xrs 17414 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 |
| This theorem is referenced by: xrge0cmn 21390 xrge0gsumle 24769 xrge0tsms 24770 xrge0tsmsd 33083 |
| Copyright terms: Public domain | W3C validator |