Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrge0subm | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrge0subm | ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*) | |
2 | ge0nemnf 12836 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞) | |
3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) |
4 | elxrge0 13118 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
5 | eldifsn 4717 | . . . 4 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
6 | 3, 4, 5 | 3imtr4i 291 | . . 3 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞})) |
7 | 6 | ssriv 3921 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
8 | 0e0iccpnf 13120 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
9 | ge0xaddcl 13123 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞)) | |
10 | 9 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞) |
11 | xrs1mnd.1 | . . . 4 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
12 | 11 | xrs1mnd 20548 | . . 3 ⊢ 𝑅 ∈ Mnd |
13 | difss 4062 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
14 | xrsbas 20526 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
15 | 11, 14 | ressbas2 16875 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
16 | 13, 15 | ax-mp 5 | . . . 4 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
17 | 11 | xrs10 20549 | . . . 4 ⊢ 0 = (0g‘𝑅) |
18 | xrex 12656 | . . . . . 6 ⊢ ℝ* ∈ V | |
19 | 18 | difexi 5247 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
20 | xrsadd 20527 | . . . . . 6 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
21 | 11, 20 | ressplusg 16926 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ +𝑒 = (+g‘𝑅) |
23 | 16, 17, 22 | issubm 18357 | . . 3 ⊢ (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))) |
24 | 12, 23 | ax-mp 5 | . 2 ⊢ ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))) |
25 | 7, 8, 10, 24 | mpbir3an 1339 | 1 ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 ≤ cle 10941 +𝑒 cxad 12775 [,]cicc 13011 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 ℝ*𝑠cxrs 17128 Mndcmnd 18300 SubMndcsubmnd 18344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xadd 12778 df-icc 13015 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-xrs 17130 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 |
This theorem is referenced by: xrge0cmn 20552 xrge0gsumle 23902 xrge0tsms 23903 xrge0tsmsd 31219 |
Copyright terms: Public domain | W3C validator |