MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0subm Structured version   Visualization version   GIF version

Theorem xrge0subm 21375
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrge0subm (0[,]+∞) ∈ (SubMnd‘𝑅)

Proof of Theorem xrge0subm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
2 ge0nemnf 13067 . . . . 5 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
31, 2jca 511 . . . 4 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
4 elxrge0 13352 . . . 4 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
5 eldifsn 4733 . . . 4 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
63, 4, 53imtr4i 292 . . 3 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
76ssriv 3933 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
8 0e0iccpnf 13354 . 2 0 ∈ (0[,]+∞)
9 ge0xaddcl 13357 . . 3 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
109rgen2 3172 . 2 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)
11 xrs1mnd.1 . . . 4 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
1211xrs1mnd 21372 . . 3 𝑅 ∈ Mnd
13 difss 4081 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
14 xrsbas 17505 . . . . . 6 * = (Base‘ℝ*𝑠)
1511, 14ressbas2 17144 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
1613, 15ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) = (Base‘𝑅)
1711xrs10 21373 . . . 4 0 = (0g𝑅)
18 xrex 12880 . . . . . 6 * ∈ V
1918difexi 5263 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
20 xrsadd 21317 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
2111, 20ressplusg 17190 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
2219, 21ax-mp 5 . . . 4 +𝑒 = (+g𝑅)
2316, 17, 22issubm 18706 . . 3 (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))))
2412, 23ax-mp 5 . 2 ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))
257, 8, 10, 24mpbir3an 1342 1 (0[,]+∞) ∈ (SubMnd‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  wss 3897  {csn 4571   class class class wbr 5086  cfv 6476  (class class class)co 7341  0cc0 11001  +∞cpnf 11138  -∞cmnf 11139  *cxr 11140  cle 11142   +𝑒 cxad 13004  [,]cicc 13243  Basecbs 17115  s cress 17136  +gcplusg 17156  *𝑠cxrs 17399  Mndcmnd 18637  SubMndcsubmnd 18685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-xadd 13007  df-icc 13247  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-tset 17175  df-ple 17176  df-ds 17178  df-0g 17340  df-xrs 17401  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687
This theorem is referenced by:  xrge0cmn  21376  xrge0gsumle  24744  xrge0tsms  24745  xrge0tsmsd  33034
  Copyright terms: Public domain W3C validator