| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0subm | Structured version Visualization version GIF version | ||
| Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
| Ref | Expression |
|---|---|
| xrge0subm | ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*) | |
| 2 | ge0nemnf 13067 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) |
| 4 | elxrge0 13352 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
| 5 | eldifsn 4733 | . . . 4 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | . . 3 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞})) |
| 7 | 6 | ssriv 3933 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 8 | 0e0iccpnf 13354 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 9 | ge0xaddcl 13357 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞)) | |
| 10 | 9 | rgen2 3172 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞) |
| 11 | xrs1mnd.1 | . . . 4 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 12 | 11 | xrs1mnd 21372 | . . 3 ⊢ 𝑅 ∈ Mnd |
| 13 | difss 4081 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 14 | xrsbas 17505 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 15 | 11, 14 | ressbas2 17144 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
| 16 | 13, 15 | ax-mp 5 | . . . 4 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
| 17 | 11 | xrs10 21373 | . . . 4 ⊢ 0 = (0g‘𝑅) |
| 18 | xrex 12880 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 19 | 18 | difexi 5263 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 20 | xrsadd 21317 | . . . . . 6 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 21 | 11, 20 | ressplusg 17190 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
| 22 | 19, 21 | ax-mp 5 | . . . 4 ⊢ +𝑒 = (+g‘𝑅) |
| 23 | 16, 17, 22 | issubm 18706 | . . 3 ⊢ (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))) |
| 24 | 12, 23 | ax-mp 5 | . 2 ⊢ ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))) |
| 25 | 7, 8, 10, 24 | mpbir3an 1342 | 1 ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 {csn 4571 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 0cc0 11001 +∞cpnf 11138 -∞cmnf 11139 ℝ*cxr 11140 ≤ cle 11142 +𝑒 cxad 13004 [,]cicc 13243 Basecbs 17115 ↾s cress 17136 +gcplusg 17156 ℝ*𝑠cxrs 17399 Mndcmnd 18637 SubMndcsubmnd 18685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-xadd 13007 df-icc 13247 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-tset 17175 df-ple 17176 df-ds 17178 df-0g 17340 df-xrs 17401 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 |
| This theorem is referenced by: xrge0cmn 21376 xrge0gsumle 24744 xrge0tsms 24745 xrge0tsmsd 33034 |
| Copyright terms: Public domain | W3C validator |