MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0subm Structured version   Visualization version   GIF version

Theorem xrge0subm 21269
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrge0subm (0[,]+∞) ∈ (SubMnd‘𝑅)

Proof of Theorem xrge0subm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
2 ge0nemnf 13148 . . . . 5 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
31, 2jca 511 . . . 4 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
4 elxrge0 13430 . . . 4 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
5 eldifsn 4782 . . . 4 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
63, 4, 53imtr4i 292 . . 3 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
76ssriv 3978 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
8 0e0iccpnf 13432 . 2 0 ∈ (0[,]+∞)
9 ge0xaddcl 13435 . . 3 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
109rgen2 3189 . 2 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)
11 xrs1mnd.1 . . . 4 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
1211xrs1mnd 21266 . . 3 𝑅 ∈ Mnd
13 difss 4123 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
14 xrsbas 21244 . . . . . 6 * = (Base‘ℝ*𝑠)
1511, 14ressbas2 17180 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
1613, 15ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) = (Base‘𝑅)
1711xrs10 21267 . . . 4 0 = (0g𝑅)
18 xrex 12967 . . . . . 6 * ∈ V
1918difexi 5318 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
20 xrsadd 21245 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
2111, 20ressplusg 17233 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
2219, 21ax-mp 5 . . . 4 +𝑒 = (+g𝑅)
2316, 17, 22issubm 18717 . . 3 (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))))
2412, 23ax-mp 5 . 2 ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))
257, 8, 10, 24mpbir3an 1338 1 (0[,]+∞) ∈ (SubMnd‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  Vcvv 3466  cdif 3937  wss 3940  {csn 4620   class class class wbr 5138  cfv 6533  (class class class)co 7401  0cc0 11105  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243  cle 11245   +𝑒 cxad 13086  [,]cicc 13323  Basecbs 17142  s cress 17171  +gcplusg 17195  *𝑠cxrs 17444  Mndcmnd 18656  SubMndcsubmnd 18701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-xadd 13089  df-icc 13327  df-fz 13481  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-tset 17214  df-ple 17215  df-ds 17217  df-0g 17385  df-xrs 17446  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703
This theorem is referenced by:  xrge0cmn  21270  xrge0gsumle  24670  xrge0tsms  24671  xrge0tsmsd  32643
  Copyright terms: Public domain W3C validator