![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0subm | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrge0subm | ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*) | |
2 | ge0nemnf 12253 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞) | |
3 | 1, 2 | jca 508 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) |
4 | elxrge0 12532 | . . . 4 ⊢ (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥)) | |
5 | eldifsn 4506 | . . . 4 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
6 | 3, 4, 5 | 3imtr4i 284 | . . 3 ⊢ (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞})) |
7 | 6 | ssriv 3802 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
8 | 0e0iccpnf 12534 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
9 | ge0xaddcl 12537 | . . 3 ⊢ ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞)) | |
10 | 9 | rgen2a 3158 | . 2 ⊢ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞) |
11 | xrs1mnd.1 | . . . 4 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
12 | 11 | xrs1mnd 20106 | . . 3 ⊢ 𝑅 ∈ Mnd |
13 | difss 3935 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
14 | xrsbas 20084 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
15 | 11, 14 | ressbas2 16256 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
16 | 13, 15 | ax-mp 5 | . . . 4 ⊢ (ℝ* ∖ {-∞}) = (Base‘𝑅) |
17 | 11 | xrs10 20107 | . . . 4 ⊢ 0 = (0g‘𝑅) |
18 | xrex 12071 | . . . . . 6 ⊢ ℝ* ∈ V | |
19 | difexg 5003 | . . . . . 6 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
21 | xrsadd 20085 | . . . . . 6 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
22 | 11, 21 | ressplusg 16314 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
23 | 20, 22 | ax-mp 5 | . . . 4 ⊢ +𝑒 = (+g‘𝑅) |
24 | 16, 17, 23 | issubm 17662 | . . 3 ⊢ (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))) |
25 | 12, 24 | ax-mp 5 | . 2 ⊢ ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))) |
26 | 7, 8, 10, 25 | mpbir3an 1442 | 1 ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 Vcvv 3385 ∖ cdif 3766 ⊆ wss 3769 {csn 4368 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 0cc0 10224 +∞cpnf 10360 -∞cmnf 10361 ℝ*cxr 10362 ≤ cle 10364 +𝑒 cxad 12191 [,]cicc 12427 Basecbs 16184 ↾s cress 16185 +gcplusg 16267 ℝ*𝑠cxrs 16475 Mndcmnd 17609 SubMndcsubmnd 17649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-xadd 12194 df-icc 12431 df-fz 12581 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-tset 16286 df-ple 16287 df-ds 16289 df-0g 16417 df-xrs 16477 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 |
This theorem is referenced by: xrge0cmn 20110 xrge0gsumle 22964 xrge0tsms 22965 xrge0tsmsd 30301 |
Copyright terms: Public domain | W3C validator |