![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0subm | Structured version Visualization version GIF version |
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrs1mnd.1 | β’ π = (β*π βΎs (β* β {-β})) |
Ref | Expression |
---|---|
xrge0subm | β’ (0[,]+β) β (SubMndβπ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 β’ ((π₯ β β* β§ 0 β€ π₯) β π₯ β β*) | |
2 | ge0nemnf 13157 | . . . . 5 β’ ((π₯ β β* β§ 0 β€ π₯) β π₯ β -β) | |
3 | 1, 2 | jca 511 | . . . 4 β’ ((π₯ β β* β§ 0 β€ π₯) β (π₯ β β* β§ π₯ β -β)) |
4 | elxrge0 13439 | . . . 4 β’ (π₯ β (0[,]+β) β (π₯ β β* β§ 0 β€ π₯)) | |
5 | eldifsn 4791 | . . . 4 β’ (π₯ β (β* β {-β}) β (π₯ β β* β§ π₯ β -β)) | |
6 | 3, 4, 5 | 3imtr4i 291 | . . 3 β’ (π₯ β (0[,]+β) β π₯ β (β* β {-β})) |
7 | 6 | ssriv 3987 | . 2 β’ (0[,]+β) β (β* β {-β}) |
8 | 0e0iccpnf 13441 | . 2 β’ 0 β (0[,]+β) | |
9 | ge0xaddcl 13444 | . . 3 β’ ((π₯ β (0[,]+β) β§ π¦ β (0[,]+β)) β (π₯ +π π¦) β (0[,]+β)) | |
10 | 9 | rgen2 3196 | . 2 β’ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(π₯ +π π¦) β (0[,]+β) |
11 | xrs1mnd.1 | . . . 4 β’ π = (β*π βΎs (β* β {-β})) | |
12 | 11 | xrs1mnd 21184 | . . 3 β’ π β Mnd |
13 | difss 4132 | . . . . 5 β’ (β* β {-β}) β β* | |
14 | xrsbas 21162 | . . . . . 6 β’ β* = (Baseββ*π ) | |
15 | 11, 14 | ressbas2 17187 | . . . . 5 β’ ((β* β {-β}) β β* β (β* β {-β}) = (Baseβπ )) |
16 | 13, 15 | ax-mp 5 | . . . 4 β’ (β* β {-β}) = (Baseβπ ) |
17 | 11 | xrs10 21185 | . . . 4 β’ 0 = (0gβπ ) |
18 | xrex 12976 | . . . . . 6 β’ β* β V | |
19 | 18 | difexi 5329 | . . . . 5 β’ (β* β {-β}) β V |
20 | xrsadd 21163 | . . . . . 6 β’ +π = (+gββ*π ) | |
21 | 11, 20 | ressplusg 17240 | . . . . 5 β’ ((β* β {-β}) β V β +π = (+gβπ )) |
22 | 19, 21 | ax-mp 5 | . . . 4 β’ +π = (+gβπ ) |
23 | 16, 17, 22 | issubm 18721 | . . 3 β’ (π β Mnd β ((0[,]+β) β (SubMndβπ ) β ((0[,]+β) β (β* β {-β}) β§ 0 β (0[,]+β) β§ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(π₯ +π π¦) β (0[,]+β)))) |
24 | 12, 23 | ax-mp 5 | . 2 β’ ((0[,]+β) β (SubMndβπ ) β ((0[,]+β) β (β* β {-β}) β§ 0 β (0[,]+β) β§ βπ₯ β (0[,]+β)βπ¦ β (0[,]+β)(π₯ +π π¦) β (0[,]+β))) |
25 | 7, 8, 10, 24 | mpbir3an 1340 | 1 β’ (0[,]+β) β (SubMndβπ ) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 Vcvv 3473 β cdif 3946 β wss 3949 {csn 4629 class class class wbr 5149 βcfv 6544 (class class class)co 7412 0cc0 11113 +βcpnf 11250 -βcmnf 11251 β*cxr 11252 β€ cle 11254 +π cxad 13095 [,]cicc 13332 Basecbs 17149 βΎs cress 17178 +gcplusg 17202 β*π cxrs 17451 Mndcmnd 18660 SubMndcsubmnd 18705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-xadd 13098 df-icc 13336 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-tset 17221 df-ple 17222 df-ds 17224 df-0g 17392 df-xrs 17453 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 |
This theorem is referenced by: xrge0cmn 21188 xrge0gsumle 24570 xrge0tsms 24571 xrge0tsmsd 32476 |
Copyright terms: Public domain | W3C validator |