MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0subm Structured version   Visualization version   GIF version

Theorem xrge0subm 20130
Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrge0subm (0[,]+∞) ∈ (SubMnd‘𝑅)

Proof of Theorem xrge0subm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
2 ge0nemnf 12554 . . . . 5 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
31, 2jca 515 . . . 4 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
4 elxrge0 12835 . . . 4 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
5 eldifsn 4693 . . . 4 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
63, 4, 53imtr4i 295 . . 3 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
76ssriv 3946 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
8 0e0iccpnf 12837 . 2 0 ∈ (0[,]+∞)
9 ge0xaddcl 12840 . . 3 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
109rgen2 3193 . 2 𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)
11 xrs1mnd.1 . . . 4 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
1211xrs1mnd 20127 . . 3 𝑅 ∈ Mnd
13 difss 4083 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
14 xrsbas 20105 . . . . . 6 * = (Base‘ℝ*𝑠)
1511, 14ressbas2 16546 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
1613, 15ax-mp 5 . . . 4 (ℝ* ∖ {-∞}) = (Base‘𝑅)
1711xrs10 20128 . . . 4 0 = (0g𝑅)
18 xrex 12374 . . . . . 6 * ∈ V
1918difexi 5208 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
20 xrsadd 20106 . . . . . 6 +𝑒 = (+g‘ℝ*𝑠)
2111, 20ressplusg 16603 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
2219, 21ax-mp 5 . . . 4 +𝑒 = (+g𝑅)
2316, 17, 22issubm 17959 . . 3 (𝑅 ∈ Mnd → ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞))))
2412, 23ax-mp 5 . 2 ((0[,]+∞) ∈ (SubMnd‘𝑅) ↔ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝑥 +𝑒 𝑦) ∈ (0[,]+∞)))
257, 8, 10, 24mpbir3an 1338 1 (0[,]+∞) ∈ (SubMnd‘𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wral 3130  Vcvv 3469  cdif 3905  wss 3908  {csn 4539   class class class wbr 5042  cfv 6334  (class class class)co 7140  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663  cle 10665   +𝑒 cxad 12493  [,]cicc 12729  Basecbs 16474  s cress 16475  +gcplusg 16556  *𝑠cxrs 16764  Mndcmnd 17902  SubMndcsubmnd 17946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-icc 12733  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-tset 16575  df-ple 16576  df-ds 16578  df-0g 16706  df-xrs 16766  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948
This theorem is referenced by:  xrge0cmn  20131  xrge0gsumle  23436  xrge0tsms  23437  xrge0tsmsd  30723
  Copyright terms: Public domain W3C validator