Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limsuple | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsuple | ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*) | |
2 | reex 11055 | . . . . . . 7 ⊢ ℝ ∈ V | |
3 | 2 | ssex 5262 | . . . . . 6 ⊢ (𝐵 ⊆ ℝ → 𝐵 ∈ V) |
4 | 3 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐵 ∈ V) |
5 | xrex 12820 | . . . . . 6 ⊢ ℝ* ∈ V | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ℝ* ∈ V) |
7 | fex2 7840 | . . . . 5 ⊢ ((𝐹:𝐵⟶ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V) | |
8 | 1, 4, 6, 7 | syl3anc 1370 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ V) |
9 | limsupval.1 | . . . . 5 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
10 | 9 | limsupval 15274 | . . . 4 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
12 | 11 | breq2d 5101 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ 𝐴 ≤ inf(ran 𝐺, ℝ*, < ))) |
13 | 9 | limsupgf 15275 | . . . . 5 ⊢ 𝐺:ℝ⟶ℝ* |
14 | frn 6652 | . . . . 5 ⊢ (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ran 𝐺 ⊆ ℝ* |
16 | simp3 1137 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
17 | infxrgelb 13162 | . . . 4 ⊢ ((ran 𝐺 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥)) | |
18 | 15, 16, 17 | sylancr 587 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥)) |
19 | ffn 6645 | . . . . 5 ⊢ (𝐺:ℝ⟶ℝ* → 𝐺 Fn ℝ) | |
20 | 13, 19 | ax-mp 5 | . . . 4 ⊢ 𝐺 Fn ℝ |
21 | breq2 5093 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑗) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐺‘𝑗))) | |
22 | 21 | ralrn 7014 | . . . 4 ⊢ (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
23 | 20, 22 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗)) |
24 | 18, 23 | bitrdi 286 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
25 | 12, 24 | bitrd 278 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5172 ran crn 5615 “ cima 5617 Fn wfn 6468 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 supcsup 9289 infcinf 9290 ℝcr 10963 +∞cpnf 11099 ℝ*cxr 11101 < clt 11102 ≤ cle 11103 [,)cico 13174 lim supclsp 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-limsup 15271 |
This theorem is referenced by: limsuplt 15279 limsupbnd1 15282 limsupbnd2 15283 mbflimsup 24928 limsupge 43627 |
Copyright terms: Public domain | W3C validator |