MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsuple Structured version   Visualization version   GIF version

Theorem limsuple 14834
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypothesis
Ref Expression
limsupval.1 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
Assertion
Ref Expression
limsuple ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
Distinct variable groups:   𝑘,𝐹   𝐴,𝑗   𝐵,𝑗   𝑗,𝑘,𝐹   𝑗,𝐺
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐺(𝑘)

Proof of Theorem limsuple
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1133 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*)
2 reex 10627 . . . . . . 7 ℝ ∈ V
32ssex 5224 . . . . . 6 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
433ad2ant1 1129 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐵 ∈ V)
5 xrex 12385 . . . . . 6 * ∈ V
65a1i 11 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → ℝ* ∈ V)
7 fex2 7637 . . . . 5 ((𝐹:𝐵⟶ℝ*𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V)
81, 4, 6, 7syl3anc 1367 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐹 ∈ V)
9 limsupval.1 . . . . 5 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
109limsupval 14830 . . . 4 (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
118, 10syl 17 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < ))
1211breq2d 5077 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ 𝐴 ≤ inf(ran 𝐺, ℝ*, < )))
139limsupgf 14831 . . . . 5 𝐺:ℝ⟶ℝ*
14 frn 6519 . . . . 5 (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*)
1513, 14ax-mp 5 . . . 4 ran 𝐺 ⊆ ℝ*
16 simp3 1134 . . . 4 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
17 infxrgelb 12727 . . . 4 ((ran 𝐺 ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴𝑥))
1815, 16, 17sylancr 589 . . 3 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴𝑥))
19 ffn 6513 . . . . 5 (𝐺:ℝ⟶ℝ*𝐺 Fn ℝ)
2013, 19ax-mp 5 . . . 4 𝐺 Fn ℝ
21 breq2 5069 . . . . 5 (𝑥 = (𝐺𝑗) → (𝐴𝑥𝐴 ≤ (𝐺𝑗)))
2221ralrn 6853 . . . 4 (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝐴𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
2320, 22ax-mp 5 . . 3 (∀𝑥 ∈ ran 𝐺 𝐴𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗))
2418, 23syl6bb 289 . 2 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
2512, 24bitrd 281 1 ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cin 3934  wss 3935   class class class wbr 5065  cmpt 5145  ran crn 5555  cima 5557   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  infcinf 8904  cr 10535  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  [,)cico 12739  lim supclsp 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-limsup 14827
This theorem is referenced by:  limsuplt  14835  limsupbnd1  14838  limsupbnd2  14839  mbflimsup  24266  limsupge  42040
  Copyright terms: Public domain W3C validator