![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limsuple | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) |
Ref | Expression |
---|---|
limsuple | β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β βπ β β π΄ β€ (πΊβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ:π΅βΆβ*) | |
2 | reex 11205 | . . . . . . 7 β’ β β V | |
3 | 2 | ssex 5321 | . . . . . 6 β’ (π΅ β β β π΅ β V) |
4 | 3 | 3ad2ant1 1132 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΅ β V) |
5 | xrex 12976 | . . . . . 6 β’ β* β V | |
6 | 5 | a1i 11 | . . . . 5 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β β* β V) |
7 | fex2 7928 | . . . . 5 β’ ((πΉ:π΅βΆβ* β§ π΅ β V β§ β* β V) β πΉ β V) | |
8 | 1, 4, 6, 7 | syl3anc 1370 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β πΉ β V) |
9 | limsupval.1 | . . . . 5 β’ πΊ = (π β β β¦ sup(((πΉ β (π[,)+β)) β© β*), β*, < )) | |
10 | 9 | limsupval 15423 | . . . 4 β’ (πΉ β V β (lim supβπΉ) = inf(ran πΊ, β*, < )) |
11 | 8, 10 | syl 17 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (lim supβπΉ) = inf(ran πΊ, β*, < )) |
12 | 11 | breq2d 5160 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β π΄ β€ inf(ran πΊ, β*, < ))) |
13 | 9 | limsupgf 15424 | . . . . 5 β’ πΊ:ββΆβ* |
14 | frn 6724 | . . . . 5 β’ (πΊ:ββΆβ* β ran πΊ β β*) | |
15 | 13, 14 | ax-mp 5 | . . . 4 β’ ran πΊ β β* |
16 | simp3 1137 | . . . 4 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β π΄ β β*) | |
17 | infxrgelb 13319 | . . . 4 β’ ((ran πΊ β β* β§ π΄ β β*) β (π΄ β€ inf(ran πΊ, β*, < ) β βπ₯ β ran πΊ π΄ β€ π₯)) | |
18 | 15, 16, 17 | sylancr 586 | . . 3 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ inf(ran πΊ, β*, < ) β βπ₯ β ran πΊ π΄ β€ π₯)) |
19 | ffn 6717 | . . . . 5 β’ (πΊ:ββΆβ* β πΊ Fn β) | |
20 | 13, 19 | ax-mp 5 | . . . 4 β’ πΊ Fn β |
21 | breq2 5152 | . . . . 5 β’ (π₯ = (πΊβπ) β (π΄ β€ π₯ β π΄ β€ (πΊβπ))) | |
22 | 21 | ralrn 7089 | . . . 4 β’ (πΊ Fn β β (βπ₯ β ran πΊ π΄ β€ π₯ β βπ β β π΄ β€ (πΊβπ))) |
23 | 20, 22 | ax-mp 5 | . . 3 β’ (βπ₯ β ran πΊ π΄ β€ π₯ β βπ β β π΄ β€ (πΊβπ)) |
24 | 18, 23 | bitrdi 287 | . 2 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ inf(ran πΊ, β*, < ) β βπ β β π΄ β€ (πΊβπ))) |
25 | 12, 24 | bitrd 279 | 1 β’ ((π΅ β β β§ πΉ:π΅βΆβ* β§ π΄ β β*) β (π΄ β€ (lim supβπΉ) β βπ β β π΄ β€ (πΊβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1086 = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 β© cin 3947 β wss 3948 class class class wbr 5148 β¦ cmpt 5231 ran crn 5677 β cima 5679 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7412 supcsup 9439 infcinf 9440 βcr 11113 +βcpnf 11250 β*cxr 11252 < clt 11253 β€ cle 11254 [,)cico 13331 lim supclsp 15419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-limsup 15420 |
This theorem is referenced by: limsuplt 15428 limsupbnd1 15431 limsupbnd2 15432 mbflimsup 25416 limsupge 44776 |
Copyright terms: Public domain | W3C validator |