| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limsuple | Structured version Visualization version GIF version | ||
| Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
| Ref | Expression |
|---|---|
| limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Ref | Expression |
|---|---|
| limsuple | ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*) | |
| 2 | reex 11166 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 3 | 2 | ssex 5279 | . . . . . 6 ⊢ (𝐵 ⊆ ℝ → 𝐵 ∈ V) |
| 4 | 3 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐵 ∈ V) |
| 5 | xrex 12953 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ℝ* ∈ V) |
| 7 | fex2 7915 | . . . . 5 ⊢ ((𝐹:𝐵⟶ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V) | |
| 8 | 1, 4, 6, 7 | syl3anc 1373 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ V) |
| 9 | limsupval.1 | . . . . 5 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 10 | 9 | limsupval 15447 | . . . 4 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
| 12 | 11 | breq2d 5122 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ 𝐴 ≤ inf(ran 𝐺, ℝ*, < ))) |
| 13 | 9 | limsupgf 15448 | . . . . 5 ⊢ 𝐺:ℝ⟶ℝ* |
| 14 | frn 6698 | . . . . 5 ⊢ (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ran 𝐺 ⊆ ℝ* |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
| 17 | infxrgelb 13303 | . . . 4 ⊢ ((ran 𝐺 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥)) | |
| 18 | 15, 16, 17 | sylancr 587 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥)) |
| 19 | ffn 6691 | . . . . 5 ⊢ (𝐺:ℝ⟶ℝ* → 𝐺 Fn ℝ) | |
| 20 | 13, 19 | ax-mp 5 | . . . 4 ⊢ 𝐺 Fn ℝ |
| 21 | breq2 5114 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑗) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐺‘𝑗))) | |
| 22 | 21 | ralrn 7063 | . . . 4 ⊢ (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
| 23 | 20, 22 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗)) |
| 24 | 18, 23 | bitrdi 287 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
| 25 | 12, 24 | bitrd 279 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supcsup 9398 infcinf 9399 ℝcr 11074 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 [,)cico 13315 lim supclsp 15443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-limsup 15444 |
| This theorem is referenced by: limsuplt 15452 limsupbnd1 15455 limsupbnd2 15456 mbflimsup 25574 limsupge 45766 |
| Copyright terms: Public domain | W3C validator |