Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limsuple | Structured version Visualization version GIF version |
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.) |
Ref | Expression |
---|---|
limsupval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
Ref | Expression |
---|---|
limsuple | ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹:𝐵⟶ℝ*) | |
2 | reex 10962 | . . . . . . 7 ⊢ ℝ ∈ V | |
3 | 2 | ssex 5245 | . . . . . 6 ⊢ (𝐵 ⊆ ℝ → 𝐵 ∈ V) |
4 | 3 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐵 ∈ V) |
5 | xrex 12727 | . . . . . 6 ⊢ ℝ* ∈ V | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → ℝ* ∈ V) |
7 | fex2 7780 | . . . . 5 ⊢ ((𝐹:𝐵⟶ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V) → 𝐹 ∈ V) | |
8 | 1, 4, 6, 7 | syl3anc 1370 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ V) |
9 | limsupval.1 | . . . . 5 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ sup(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
10 | 9 | limsupval 15183 | . . . 4 ⊢ (𝐹 ∈ V → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (lim sup‘𝐹) = inf(ran 𝐺, ℝ*, < )) |
12 | 11 | breq2d 5086 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ 𝐴 ≤ inf(ran 𝐺, ℝ*, < ))) |
13 | 9 | limsupgf 15184 | . . . . 5 ⊢ 𝐺:ℝ⟶ℝ* |
14 | frn 6607 | . . . . 5 ⊢ (𝐺:ℝ⟶ℝ* → ran 𝐺 ⊆ ℝ*) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ran 𝐺 ⊆ ℝ* |
16 | simp3 1137 | . . . 4 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
17 | infxrgelb 13069 | . . . 4 ⊢ ((ran 𝐺 ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥)) | |
18 | 15, 16, 17 | sylancr 587 | . . 3 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥)) |
19 | ffn 6600 | . . . . 5 ⊢ (𝐺:ℝ⟶ℝ* → 𝐺 Fn ℝ) | |
20 | 13, 19 | ax-mp 5 | . . . 4 ⊢ 𝐺 Fn ℝ |
21 | breq2 5078 | . . . . 5 ⊢ (𝑥 = (𝐺‘𝑗) → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ (𝐺‘𝑗))) | |
22 | 21 | ralrn 6964 | . . . 4 ⊢ (𝐺 Fn ℝ → (∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
23 | 20, 22 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗)) |
24 | 18, 23 | bitrdi 287 | . 2 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ inf(ran 𝐺, ℝ*, < ) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
25 | 12, 24 | bitrd 278 | 1 ⊢ ((𝐵 ⊆ ℝ ∧ 𝐹:𝐵⟶ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴 ≤ (lim sup‘𝐹) ↔ ∀𝑗 ∈ ℝ 𝐴 ≤ (𝐺‘𝑗))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 supcsup 9199 infcinf 9200 ℝcr 10870 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 lim supclsp 15179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-limsup 15180 |
This theorem is referenced by: limsuplt 15188 limsupbnd1 15191 limsupbnd2 15192 mbflimsup 24830 limsupge 43302 |
Copyright terms: Public domain | W3C validator |