MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zletr Structured version   Visualization version   GIF version

Theorem zletr 12659
Description: Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
zletr ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))

Proof of Theorem zletr
StepHypRef Expression
1 zre 12615 . 2 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
2 zre 12615 . 2 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3 zre 12615 . 2 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 letr 11353 . 2 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))
51, 2, 3, 4syl3an 1159 1 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2106   class class class wbr 5148  cr 11152  cle 11294  cz 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612
This theorem is referenced by:  uztrn  12894  uzss  12899  elfz0ubfz0  13669
  Copyright terms: Public domain W3C validator