MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zletr Structured version   Visualization version   GIF version

Theorem zletr 12107
Description: Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
zletr ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))

Proof of Theorem zletr
StepHypRef Expression
1 zre 12066 . 2 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
2 zre 12066 . 2 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
3 zre 12066 . 2 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 letr 10812 . 2 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))
51, 2, 3, 4syl3an 1161 1 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽𝐾𝐾𝐿) → 𝐽𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wcel 2114   class class class wbr 5030  cr 10614  cle 10754  cz 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-pre-lttri 10689  ax-pre-lttrn 10690
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-neg 10951  df-z 12063
This theorem is referenced by:  uztrn  12342  uzss  12347  elfz0ubfz0  13102
  Copyright terms: Public domain W3C validator