| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2zm | Structured version Visualization version GIF version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12649 | . 2 ⊢ 1 ∈ ℤ | |
| 2 | zsubcl 12661 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 − 1) ∈ ℤ) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
| Copyright terms: Public domain | W3C validator |