Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2zm | Structured version Visualization version GIF version |
Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
Ref | Expression |
---|---|
peano2zm | ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12280 | . 2 ⊢ 1 ∈ ℤ | |
2 | zsubcl 12292 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 − 1) ∈ ℤ) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) |
Copyright terms: Public domain | W3C validator |