MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz0ubfz0 Structured version   Visualization version   GIF version

Theorem elfz0ubfz0 13649
Description: An element of a finite set of sequential nonnegative integers is an element of a finite set of sequential nonnegative integers with the upper bound being an element of the finite set of sequential nonnegative integers with the same lower bound as for the first interval and the element under consideration as upper bound. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
Assertion
Ref Expression
elfz0ubfz0 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))

Proof of Theorem elfz0ubfz0
StepHypRef Expression
1 elfz2nn0 13635 . . . 4 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
2 elfz2 13531 . . . . . 6 (𝐿 ∈ (𝐾...𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)))
3 simpr1 1195 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾 ∈ ℕ0)
4 elnn0z 12601 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
5 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℤ)
6 0z 12599 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℤ
7 zletr 12636 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
86, 7mp3an1 1450 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 0 ≤ 𝐿))
9 elnn0z 12601 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿))
109simplbi2 500 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → (0 ≤ 𝐿𝐿 ∈ ℕ0))
115, 8, 10sylsyld 61 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝐿) → 𝐿 ∈ ℕ0))
1211expd 415 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝐾 → (𝐾𝐿𝐿 ∈ ℕ0)))
1312impancom 451 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
144, 13sylbi 217 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 → (𝐿 ∈ ℤ → (𝐾𝐿𝐿 ∈ ℕ0)))
1514com13 88 . . . . . . . . . . . . . . 15 (𝐾𝐿 → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1615adantr 480 . . . . . . . . . . . . . 14 ((𝐾𝐿𝐿𝑁) → (𝐿 ∈ ℤ → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1716com12 32 . . . . . . . . . . . . 13 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
18173ad2ant3 1135 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0)))
1918imp 406 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0))
2019com12 32 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
21203ad2ant1 1133 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → 𝐿 ∈ ℕ0))
2221impcom 407 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐿 ∈ ℕ0)
23 simplrl 776 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → 𝐾𝐿)
243, 22, 233jca 1128 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
2524ex 412 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿𝑁)) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
262, 25sylbi 217 . . . . 5 (𝐿 ∈ (𝐾...𝑁) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2726com12 32 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
281, 27sylbi 217 . . 3 (𝐾 ∈ (0...𝑁) → (𝐿 ∈ (𝐾...𝑁) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿)))
2928imp 406 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
30 elfz2nn0 13635 . 2 (𝐾 ∈ (0...𝐿) ↔ (𝐾 ∈ ℕ0𝐿 ∈ ℕ0𝐾𝐿))
3129, 30sylibr 234 1 ((𝐾 ∈ (0...𝑁) ∧ 𝐿 ∈ (𝐾...𝑁)) → 𝐾 ∈ (0...𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2108   class class class wbr 5119  (class class class)co 7405  0cc0 11129  cle 11270  0cn0 12501  cz 12588  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  swrdswrd  14723
  Copyright terms: Public domain W3C validator