New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > f1opprod | GIF version |
Description: The parallel product of two bijections is a bijection. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
f1opprod | ⊢ ((F:A–1-1-onto→C ∧ G:B–1-1-onto→D) → PProd (F, G):(A × B)–1-1-onto→(C × D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnpprod 5844 | . . . 4 ⊢ ((F Fn A ∧ G Fn B) → PProd (F, G) Fn (A × B)) | |
2 | fnpprod 5844 | . . . . 5 ⊢ ((◡F Fn C ∧ ◡G Fn D) → PProd (◡F, ◡G) Fn (C × D)) | |
3 | cnvpprod 5842 | . . . . . 6 ⊢ ◡ PProd (F, G) = PProd (◡F, ◡G) | |
4 | 3 | fneq1i 5179 | . . . . 5 ⊢ (◡ PProd (F, G) Fn (C × D) ↔ PProd (◡F, ◡G) Fn (C × D)) |
5 | 2, 4 | sylibr 203 | . . . 4 ⊢ ((◡F Fn C ∧ ◡G Fn D) → ◡ PProd (F, G) Fn (C × D)) |
6 | 1, 5 | anim12i 549 | . . 3 ⊢ (((F Fn A ∧ G Fn B) ∧ (◡F Fn C ∧ ◡G Fn D)) → ( PProd (F, G) Fn (A × B) ∧ ◡ PProd (F, G) Fn (C × D))) |
7 | 6 | an4s 799 | . 2 ⊢ (((F Fn A ∧ ◡F Fn C) ∧ (G Fn B ∧ ◡G Fn D)) → ( PProd (F, G) Fn (A × B) ∧ ◡ PProd (F, G) Fn (C × D))) |
8 | dff1o4 5295 | . . 3 ⊢ (F:A–1-1-onto→C ↔ (F Fn A ∧ ◡F Fn C)) | |
9 | dff1o4 5295 | . . 3 ⊢ (G:B–1-1-onto→D ↔ (G Fn B ∧ ◡G Fn D)) | |
10 | 8, 9 | anbi12i 678 | . 2 ⊢ ((F:A–1-1-onto→C ∧ G:B–1-1-onto→D) ↔ ((F Fn A ∧ ◡F Fn C) ∧ (G Fn B ∧ ◡G Fn D))) |
11 | dff1o4 5295 | . 2 ⊢ ( PProd (F, G):(A × B)–1-1-onto→(C × D) ↔ ( PProd (F, G) Fn (A × B) ∧ ◡ PProd (F, G) Fn (C × D))) | |
12 | 7, 10, 11 | 3imtr4i 257 | 1 ⊢ ((F:A–1-1-onto→C ∧ G:B–1-1-onto→D) → PProd (F, G):(A × B)–1-1-onto→(C × D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 × cxp 4771 ◡ccnv 4772 Fn wfn 4777 –1-1-onto→wf1o 4781 PProd cpprod 5738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-txp 5737 df-pprod 5739 |
This theorem is referenced by: xpen 6056 |
Copyright terms: Public domain | W3C validator |