![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1unit | GIF version |
Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
unit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unit.2 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
1unit | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | unit.2 | . . . 4 ⊢ 1 = (1r‘𝑅) | |
3 | 1, 2 | ringidcl 13519 | . . 3 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
4 | eqid 2193 | . . . 4 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
5 | 1, 4 | dvdsrid 13599 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → 1 (∥r‘𝑅) 1 ) |
6 | 3, 5 | mpdan 421 | . 2 ⊢ (𝑅 ∈ Ring → 1 (∥r‘𝑅) 1 ) |
7 | eqid 2193 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
8 | 7 | opprring 13578 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
9 | 7, 1 | opprbasg 13574 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr‘𝑅))) |
10 | 3, 9 | eleqtrd 2272 | . . 3 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘(oppr‘𝑅))) |
11 | eqid 2193 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
12 | eqid 2193 | . . . 4 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
13 | 11, 12 | dvdsrid 13599 | . . 3 ⊢ (((oppr‘𝑅) ∈ Ring ∧ 1 ∈ (Base‘(oppr‘𝑅))) → 1 (∥r‘(oppr‘𝑅)) 1 ) |
14 | 8, 10, 13 | syl2anc 411 | . 2 ⊢ (𝑅 ∈ Ring → 1 (∥r‘(oppr‘𝑅)) 1 ) |
15 | unit.1 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
16 | 15 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
17 | 2 | a1i 9 | . . 3 ⊢ (𝑅 ∈ Ring → 1 = (1r‘𝑅)) |
18 | eqidd 2194 | . . 3 ⊢ (𝑅 ∈ Ring → (∥r‘𝑅) = (∥r‘𝑅)) | |
19 | eqidd 2194 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) = (oppr‘𝑅)) | |
20 | eqidd 2194 | . . 3 ⊢ (𝑅 ∈ Ring → (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅))) | |
21 | ringsrg 13546 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
22 | 16, 17, 18, 19, 20, 21 | isunitd 13605 | . 2 ⊢ (𝑅 ∈ Ring → ( 1 ∈ 𝑈 ↔ ( 1 (∥r‘𝑅) 1 ∧ 1 (∥r‘(oppr‘𝑅)) 1 ))) |
23 | 6, 14, 22 | mpbir2and 946 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 Basecbs 12621 1rcur 13458 Ringcrg 13495 opprcoppr 13566 ∥rcdsr 13585 Unitcui 13586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-oppr 13567 df-dvdsr 13588 df-unit 13589 |
This theorem is referenced by: unitgrp 13615 unitgrpid 13617 unitsubm 13618 1rinv 13627 0unit 13628 dvr1 13637 subrgugrp 13739 |
Copyright terms: Public domain | W3C validator |