ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1unit GIF version

Theorem 1unit 13603
Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
unit.1 𝑈 = (Unit‘𝑅)
unit.2 1 = (1r𝑅)
Assertion
Ref Expression
1unit (𝑅 ∈ Ring → 1𝑈)

Proof of Theorem 1unit
StepHypRef Expression
1 eqid 2193 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 unit.2 . . . 4 1 = (1r𝑅)
31, 2ringidcl 13516 . . 3 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
4 eqid 2193 . . . 4 (∥r𝑅) = (∥r𝑅)
51, 4dvdsrid 13596 . . 3 ((𝑅 ∈ Ring ∧ 1 ∈ (Base‘𝑅)) → 1 (∥r𝑅) 1 )
63, 5mpdan 421 . 2 (𝑅 ∈ Ring → 1 (∥r𝑅) 1 )
7 eqid 2193 . . . 4 (oppr𝑅) = (oppr𝑅)
87opprring 13575 . . 3 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
97, 1opprbasg 13571 . . . 4 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
103, 9eleqtrd 2272 . . 3 (𝑅 ∈ Ring → 1 ∈ (Base‘(oppr𝑅)))
11 eqid 2193 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
12 eqid 2193 . . . 4 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
1311, 12dvdsrid 13596 . . 3 (((oppr𝑅) ∈ Ring ∧ 1 ∈ (Base‘(oppr𝑅))) → 1 (∥r‘(oppr𝑅)) 1 )
148, 10, 13syl2anc 411 . 2 (𝑅 ∈ Ring → 1 (∥r‘(oppr𝑅)) 1 )
15 unit.1 . . . 4 𝑈 = (Unit‘𝑅)
1615a1i 9 . . 3 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
172a1i 9 . . 3 (𝑅 ∈ Ring → 1 = (1r𝑅))
18 eqidd 2194 . . 3 (𝑅 ∈ Ring → (∥r𝑅) = (∥r𝑅))
19 eqidd 2194 . . 3 (𝑅 ∈ Ring → (oppr𝑅) = (oppr𝑅))
20 eqidd 2194 . . 3 (𝑅 ∈ Ring → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
21 ringsrg 13543 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
2216, 17, 18, 19, 20, 21isunitd 13602 . 2 (𝑅 ∈ Ring → ( 1𝑈 ↔ ( 1 (∥r𝑅) 11 (∥r‘(oppr𝑅)) 1 )))
236, 14, 22mpbir2and 946 1 (𝑅 ∈ Ring → 1𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164   class class class wbr 4029  cfv 5254  Basecbs 12618  1rcur 13455  Ringcrg 13492  opprcoppr 13563  rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  unitgrp  13612  unitgrpid  13614  unitsubm  13615  1rinv  13624  0unit  13625  dvr1  13634  subrgugrp  13736
  Copyright terms: Public domain W3C validator