ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm Unicode version

Theorem cauappcvgprlemm 7840
Description: Lemma for cauappcvgpr 7857. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 fveq2 5629 . . . . . . 7  |-  ( p  =  1Q  ->  ( F `  p )  =  ( F `  1Q ) )
21breq2d 4095 . . . . . 6  |-  ( p  =  1Q  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  1Q ) ) )
3 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 1nq 7561 . . . . . . 7  |-  1Q  e.  Q.
54a1i 9 . . . . . 6  |-  ( ph  ->  1Q  e.  Q. )
62, 3, 5rspcdva 2912 . . . . 5  |-  ( ph  ->  A  <Q  ( F `  1Q ) )
7 ltrelnq 7560 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4771 . . . . . 6  |-  ( A 
<Q  ( F `  1Q )  ->  ( A  e. 
Q.  /\  ( F `  1Q )  e.  Q. ) )
98simpld 112 . . . . 5  |-  ( A 
<Q  ( F `  1Q )  ->  A  e.  Q. )
106, 9syl 14 . . . 4  |-  ( ph  ->  A  e.  Q. )
11 halfnqq 7605 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
1210, 11syl 14 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
13 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
143ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
15 fveq2 5629 . . . . . . . . . . . 12  |-  ( p  =  s  ->  ( F `  p )  =  ( F `  s ) )
1615breq2d 4095 . . . . . . . . . . 11  |-  ( p  =  s  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  s ) ) )
1716rspcv 2903 . . . . . . . . . 10  |-  ( s  e.  Q.  ->  ( A. p  e.  Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s
) ) )
1817ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( A. p  e. 
Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s ) ) )
1914, 18mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A  <Q  ( F `  s ) )
20 breq1 4086 . . . . . . . . 9  |-  ( ( s  +Q  s )  =  A  ->  (
( s  +Q  s
)  <Q  ( F `  s )  <->  A  <Q  ( F `  s ) ) )
2120adantl 277 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( ( s  +Q  s )  <Q  ( F `  s )  <->  A 
<Q  ( F `  s
) ) )
2219, 21mpbird 167 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( s  +Q  s
)  <Q  ( F `  s ) )
23 oveq2 6015 . . . . . . . . 9  |-  ( q  =  s  ->  (
s  +Q  q )  =  ( s  +Q  s ) )
24 fveq2 5629 . . . . . . . . 9  |-  ( q  =  s  ->  ( F `  q )  =  ( F `  s ) )
2523, 24breq12d 4096 . . . . . . . 8  |-  ( q  =  s  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  s )  <Q  ( F `  s )
) )
2625rspcev 2907 . . . . . . 7  |-  ( ( s  e.  Q.  /\  ( s  +Q  s
)  <Q  ( F `  s ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
2713, 22, 26syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
28 oveq1 6014 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
2928breq1d 4093 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
3029rexbidv 2531 . . . . . . 7  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
31 cauappcvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
3231fveq2i 5632 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
33 nqex 7558 . . . . . . . . . 10  |-  Q.  e.  _V
3433rabex 4228 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
3533rabex 4228 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
3634, 35op1st 6298 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3732, 36eqtri 2250 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3830, 37elrab2 2962 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
3913, 27, 38sylanbrc 417 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4039ex 115 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4140reximdva 2632 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
4212, 41mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
43 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
4443, 5ffvelcdmd 5773 . . . . 5  |-  ( ph  ->  ( F `  1Q )  e.  Q. )
45 addclnq 7570 . . . . 5  |-  ( ( ( F `  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  e. 
Q. )
4644, 5, 45syl2anc 411 . . . 4  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  e.  Q. )
47 addclnq 7570 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e. 
Q. )
4846, 5, 47syl2anc 411 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q. )
49 ltaddnq 7602 . . . . . 6  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  <Q 
( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q ) )
5046, 5, 49syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
51 fveq2 5629 . . . . . . . 8  |-  ( q  =  1Q  ->  ( F `  q )  =  ( F `  1Q ) )
52 id 19 . . . . . . . 8  |-  ( q  =  1Q  ->  q  =  1Q )
5351, 52oveq12d 6025 . . . . . . 7  |-  ( q  =  1Q  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 1Q )  +Q  1Q ) )
5453breq1d 4093 . . . . . 6  |-  ( q  =  1Q  ->  (
( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1Q )  +Q  1Q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5554rspcev 2907 . . . . 5  |-  ( ( 1Q  e.  Q.  /\  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
565, 50, 55syl2anc 411 . . . 4  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
57 breq2 4087 . . . . . 6  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5857rexbidv 2531 . . . . 5  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5931fveq2i 5632 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6034, 35op2nd 6299 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6159, 60eqtri 2250 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6258, 61elrab2 2962 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
6348, 56, 62sylanbrc 417 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
64 eleq1 2292 . . . 4  |-  ( r  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
6564rspcev 2907 . . 3  |-  ( ( ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6648, 63, 65syl2anc 411 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6742, 66jca 306 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   <.cop 3669   class class class wbr 4083   -->wf 5314   ` cfv 5318  (class class class)co 6007   1stc1st 6290   2ndc2nd 6291   Q.cnq 7475   1Qc1q 7476    +Q cplq 7477    <Q cltq 7480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548
This theorem is referenced by:  cauappcvgprlemcl  7848
  Copyright terms: Public domain W3C validator