| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemm | Unicode version | ||
| Description: Lemma for cauappcvgpr 7857. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5629 |
. . . . . . 7
| |
| 2 | 1 | breq2d 4095 |
. . . . . 6
|
| 3 | cauappcvgpr.bnd |
. . . . . 6
| |
| 4 | 1nq 7561 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 3, 5 | rspcdva 2912 |
. . . . 5
|
| 7 | ltrelnq 7560 |
. . . . . . 7
| |
| 8 | 7 | brel 4771 |
. . . . . 6
|
| 9 | 8 | simpld 112 |
. . . . 5
|
| 10 | 6, 9 | syl 14 |
. . . 4
|
| 11 | halfnqq 7605 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | simplr 528 |
. . . . . 6
| |
| 14 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 15 | fveq2 5629 |
. . . . . . . . . . . 12
| |
| 16 | 15 | breq2d 4095 |
. . . . . . . . . . 11
|
| 17 | 16 | rspcv 2903 |
. . . . . . . . . 10
|
| 18 | 17 | ad2antlr 489 |
. . . . . . . . 9
|
| 19 | 14, 18 | mpd 13 |
. . . . . . . 8
|
| 20 | breq1 4086 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | 19, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | oveq2 6015 |
. . . . . . . . 9
| |
| 24 | fveq2 5629 |
. . . . . . . . 9
| |
| 25 | 23, 24 | breq12d 4096 |
. . . . . . . 8
|
| 26 | 25 | rspcev 2907 |
. . . . . . 7
|
| 27 | 13, 22, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | oveq1 6014 |
. . . . . . . . 9
| |
| 29 | 28 | breq1d 4093 |
. . . . . . . 8
|
| 30 | 29 | rexbidv 2531 |
. . . . . . 7
|
| 31 | cauappcvgpr.lim |
. . . . . . . . 9
| |
| 32 | 31 | fveq2i 5632 |
. . . . . . . 8
|
| 33 | nqex 7558 |
. . . . . . . . . 10
| |
| 34 | 33 | rabex 4228 |
. . . . . . . . 9
|
| 35 | 33 | rabex 4228 |
. . . . . . . . 9
|
| 36 | 34, 35 | op1st 6298 |
. . . . . . . 8
|
| 37 | 32, 36 | eqtri 2250 |
. . . . . . 7
|
| 38 | 30, 37 | elrab2 2962 |
. . . . . 6
|
| 39 | 13, 27, 38 | sylanbrc 417 |
. . . . 5
|
| 40 | 39 | ex 115 |
. . . 4
|
| 41 | 40 | reximdva 2632 |
. . 3
|
| 42 | 12, 41 | mpd 13 |
. 2
|
| 43 | cauappcvgpr.f |
. . . . . 6
| |
| 44 | 43, 5 | ffvelcdmd 5773 |
. . . . 5
|
| 45 | addclnq 7570 |
. . . . 5
| |
| 46 | 44, 5, 45 | syl2anc 411 |
. . . 4
|
| 47 | addclnq 7570 |
. . . 4
| |
| 48 | 46, 5, 47 | syl2anc 411 |
. . 3
|
| 49 | ltaddnq 7602 |
. . . . . 6
| |
| 50 | 46, 5, 49 | syl2anc 411 |
. . . . 5
|
| 51 | fveq2 5629 |
. . . . . . . 8
| |
| 52 | id 19 |
. . . . . . . 8
| |
| 53 | 51, 52 | oveq12d 6025 |
. . . . . . 7
|
| 54 | 53 | breq1d 4093 |
. . . . . 6
|
| 55 | 54 | rspcev 2907 |
. . . . 5
|
| 56 | 5, 50, 55 | syl2anc 411 |
. . . 4
|
| 57 | breq2 4087 |
. . . . . 6
| |
| 58 | 57 | rexbidv 2531 |
. . . . 5
|
| 59 | 31 | fveq2i 5632 |
. . . . . 6
|
| 60 | 34, 35 | op2nd 6299 |
. . . . . 6
|
| 61 | 59, 60 | eqtri 2250 |
. . . . 5
|
| 62 | 58, 61 | elrab2 2962 |
. . . 4
|
| 63 | 48, 56, 62 | sylanbrc 417 |
. . 3
|
| 64 | eleq1 2292 |
. . . 4
| |
| 65 | 64 | rspcev 2907 |
. . 3
|
| 66 | 48, 63, 65 | syl2anc 411 |
. 2
|
| 67 | 42, 66 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 |
| This theorem is referenced by: cauappcvgprlemcl 7848 |
| Copyright terms: Public domain | W3C validator |