| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cauappcvgprlemm | Unicode version | ||
| Description: Lemma for cauappcvgpr 7746. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| cauappcvgpr.f |
|
| cauappcvgpr.app |
|
| cauappcvgpr.bnd |
|
| cauappcvgpr.lim |
|
| Ref | Expression |
|---|---|
| cauappcvgprlemm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5561 |
. . . . . . 7
| |
| 2 | 1 | breq2d 4046 |
. . . . . 6
|
| 3 | cauappcvgpr.bnd |
. . . . . 6
| |
| 4 | 1nq 7450 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 3, 5 | rspcdva 2873 |
. . . . 5
|
| 7 | ltrelnq 7449 |
. . . . . . 7
| |
| 8 | 7 | brel 4716 |
. . . . . 6
|
| 9 | 8 | simpld 112 |
. . . . 5
|
| 10 | 6, 9 | syl 14 |
. . . 4
|
| 11 | halfnqq 7494 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | simplr 528 |
. . . . . 6
| |
| 14 | 3 | ad2antrr 488 |
. . . . . . . . 9
|
| 15 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 16 | 15 | breq2d 4046 |
. . . . . . . . . . 11
|
| 17 | 16 | rspcv 2864 |
. . . . . . . . . 10
|
| 18 | 17 | ad2antlr 489 |
. . . . . . . . 9
|
| 19 | 14, 18 | mpd 13 |
. . . . . . . 8
|
| 20 | breq1 4037 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | 19, 21 | mpbird 167 |
. . . . . . 7
|
| 23 | oveq2 5933 |
. . . . . . . . 9
| |
| 24 | fveq2 5561 |
. . . . . . . . 9
| |
| 25 | 23, 24 | breq12d 4047 |
. . . . . . . 8
|
| 26 | 25 | rspcev 2868 |
. . . . . . 7
|
| 27 | 13, 22, 26 | syl2anc 411 |
. . . . . 6
|
| 28 | oveq1 5932 |
. . . . . . . . 9
| |
| 29 | 28 | breq1d 4044 |
. . . . . . . 8
|
| 30 | 29 | rexbidv 2498 |
. . . . . . 7
|
| 31 | cauappcvgpr.lim |
. . . . . . . . 9
| |
| 32 | 31 | fveq2i 5564 |
. . . . . . . 8
|
| 33 | nqex 7447 |
. . . . . . . . . 10
| |
| 34 | 33 | rabex 4178 |
. . . . . . . . 9
|
| 35 | 33 | rabex 4178 |
. . . . . . . . 9
|
| 36 | 34, 35 | op1st 6213 |
. . . . . . . 8
|
| 37 | 32, 36 | eqtri 2217 |
. . . . . . 7
|
| 38 | 30, 37 | elrab2 2923 |
. . . . . 6
|
| 39 | 13, 27, 38 | sylanbrc 417 |
. . . . 5
|
| 40 | 39 | ex 115 |
. . . 4
|
| 41 | 40 | reximdva 2599 |
. . 3
|
| 42 | 12, 41 | mpd 13 |
. 2
|
| 43 | cauappcvgpr.f |
. . . . . 6
| |
| 44 | 43, 5 | ffvelcdmd 5701 |
. . . . 5
|
| 45 | addclnq 7459 |
. . . . 5
| |
| 46 | 44, 5, 45 | syl2anc 411 |
. . . 4
|
| 47 | addclnq 7459 |
. . . 4
| |
| 48 | 46, 5, 47 | syl2anc 411 |
. . 3
|
| 49 | ltaddnq 7491 |
. . . . . 6
| |
| 50 | 46, 5, 49 | syl2anc 411 |
. . . . 5
|
| 51 | fveq2 5561 |
. . . . . . . 8
| |
| 52 | id 19 |
. . . . . . . 8
| |
| 53 | 51, 52 | oveq12d 5943 |
. . . . . . 7
|
| 54 | 53 | breq1d 4044 |
. . . . . 6
|
| 55 | 54 | rspcev 2868 |
. . . . 5
|
| 56 | 5, 50, 55 | syl2anc 411 |
. . . 4
|
| 57 | breq2 4038 |
. . . . . 6
| |
| 58 | 57 | rexbidv 2498 |
. . . . 5
|
| 59 | 31 | fveq2i 5564 |
. . . . . 6
|
| 60 | 34, 35 | op2nd 6214 |
. . . . . 6
|
| 61 | 59, 60 | eqtri 2217 |
. . . . 5
|
| 62 | 58, 61 | elrab2 2923 |
. . . 4
|
| 63 | 48, 56, 62 | sylanbrc 417 |
. . 3
|
| 64 | eleq1 2259 |
. . . 4
| |
| 65 | 64 | rspcev 2868 |
. . 3
|
| 66 | 48, 63, 65 | syl2anc 411 |
. 2
|
| 67 | 42, 66 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 |
| This theorem is referenced by: cauappcvgprlemcl 7737 |
| Copyright terms: Public domain | W3C validator |