ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm Unicode version

Theorem cauappcvgprlemm 7607
Description: Lemma for cauappcvgpr 7624. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 fveq2 5496 . . . . . . 7  |-  ( p  =  1Q  ->  ( F `  p )  =  ( F `  1Q ) )
21breq2d 4001 . . . . . 6  |-  ( p  =  1Q  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  1Q ) ) )
3 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 1nq 7328 . . . . . . 7  |-  1Q  e.  Q.
54a1i 9 . . . . . 6  |-  ( ph  ->  1Q  e.  Q. )
62, 3, 5rspcdva 2839 . . . . 5  |-  ( ph  ->  A  <Q  ( F `  1Q ) )
7 ltrelnq 7327 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4663 . . . . . 6  |-  ( A 
<Q  ( F `  1Q )  ->  ( A  e. 
Q.  /\  ( F `  1Q )  e.  Q. ) )
98simpld 111 . . . . 5  |-  ( A 
<Q  ( F `  1Q )  ->  A  e.  Q. )
106, 9syl 14 . . . 4  |-  ( ph  ->  A  e.  Q. )
11 halfnqq 7372 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
1210, 11syl 14 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
13 simplr 525 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
143ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
15 fveq2 5496 . . . . . . . . . . . 12  |-  ( p  =  s  ->  ( F `  p )  =  ( F `  s ) )
1615breq2d 4001 . . . . . . . . . . 11  |-  ( p  =  s  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  s ) ) )
1716rspcv 2830 . . . . . . . . . 10  |-  ( s  e.  Q.  ->  ( A. p  e.  Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s
) ) )
1817ad2antlr 486 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( A. p  e. 
Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s ) ) )
1914, 18mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A  <Q  ( F `  s ) )
20 breq1 3992 . . . . . . . . 9  |-  ( ( s  +Q  s )  =  A  ->  (
( s  +Q  s
)  <Q  ( F `  s )  <->  A  <Q  ( F `  s ) ) )
2120adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( ( s  +Q  s )  <Q  ( F `  s )  <->  A 
<Q  ( F `  s
) ) )
2219, 21mpbird 166 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( s  +Q  s
)  <Q  ( F `  s ) )
23 oveq2 5861 . . . . . . . . 9  |-  ( q  =  s  ->  (
s  +Q  q )  =  ( s  +Q  s ) )
24 fveq2 5496 . . . . . . . . 9  |-  ( q  =  s  ->  ( F `  q )  =  ( F `  s ) )
2523, 24breq12d 4002 . . . . . . . 8  |-  ( q  =  s  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  s )  <Q  ( F `  s )
) )
2625rspcev 2834 . . . . . . 7  |-  ( ( s  e.  Q.  /\  ( s  +Q  s
)  <Q  ( F `  s ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
2713, 22, 26syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
28 oveq1 5860 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
2928breq1d 3999 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
3029rexbidv 2471 . . . . . . 7  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
31 cauappcvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
3231fveq2i 5499 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
33 nqex 7325 . . . . . . . . . 10  |-  Q.  e.  _V
3433rabex 4133 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
3533rabex 4133 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
3634, 35op1st 6125 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3732, 36eqtri 2191 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3830, 37elrab2 2889 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
3913, 27, 38sylanbrc 415 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4039ex 114 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4140reximdva 2572 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
4212, 41mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
43 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
4443, 5ffvelrnd 5632 . . . . 5  |-  ( ph  ->  ( F `  1Q )  e.  Q. )
45 addclnq 7337 . . . . 5  |-  ( ( ( F `  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  e. 
Q. )
4644, 5, 45syl2anc 409 . . . 4  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  e.  Q. )
47 addclnq 7337 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e. 
Q. )
4846, 5, 47syl2anc 409 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q. )
49 ltaddnq 7369 . . . . . 6  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  <Q 
( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q ) )
5046, 5, 49syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
51 fveq2 5496 . . . . . . . 8  |-  ( q  =  1Q  ->  ( F `  q )  =  ( F `  1Q ) )
52 id 19 . . . . . . . 8  |-  ( q  =  1Q  ->  q  =  1Q )
5351, 52oveq12d 5871 . . . . . . 7  |-  ( q  =  1Q  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 1Q )  +Q  1Q ) )
5453breq1d 3999 . . . . . 6  |-  ( q  =  1Q  ->  (
( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1Q )  +Q  1Q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5554rspcev 2834 . . . . 5  |-  ( ( 1Q  e.  Q.  /\  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
565, 50, 55syl2anc 409 . . . 4  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
57 breq2 3993 . . . . . 6  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5857rexbidv 2471 . . . . 5  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5931fveq2i 5499 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6034, 35op2nd 6126 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6159, 60eqtri 2191 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6258, 61elrab2 2889 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
6348, 56, 62sylanbrc 415 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
64 eleq1 2233 . . . 4  |-  ( r  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
6564rspcev 2834 . . 3  |-  ( ( ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6648, 63, 65syl2anc 409 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6742, 66jca 304 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   1stc1st 6117   2ndc2nd 6118   Q.cnq 7242   1Qc1q 7243    +Q cplq 7244    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315
This theorem is referenced by:  cauappcvgprlemcl  7615
  Copyright terms: Public domain W3C validator