ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm Unicode version

Theorem cauappcvgprlemm 7477
Description: Lemma for cauappcvgpr 7494. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 fveq2 5429 . . . . . . 7  |-  ( p  =  1Q  ->  ( F `  p )  =  ( F `  1Q ) )
21breq2d 3949 . . . . . 6  |-  ( p  =  1Q  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  1Q ) ) )
3 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 1nq 7198 . . . . . . 7  |-  1Q  e.  Q.
54a1i 9 . . . . . 6  |-  ( ph  ->  1Q  e.  Q. )
62, 3, 5rspcdva 2798 . . . . 5  |-  ( ph  ->  A  <Q  ( F `  1Q ) )
7 ltrelnq 7197 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4599 . . . . . 6  |-  ( A 
<Q  ( F `  1Q )  ->  ( A  e. 
Q.  /\  ( F `  1Q )  e.  Q. ) )
98simpld 111 . . . . 5  |-  ( A 
<Q  ( F `  1Q )  ->  A  e.  Q. )
106, 9syl 14 . . . 4  |-  ( ph  ->  A  e.  Q. )
11 halfnqq 7242 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
1210, 11syl 14 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
13 simplr 520 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
143ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
15 fveq2 5429 . . . . . . . . . . . 12  |-  ( p  =  s  ->  ( F `  p )  =  ( F `  s ) )
1615breq2d 3949 . . . . . . . . . . 11  |-  ( p  =  s  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  s ) ) )
1716rspcv 2789 . . . . . . . . . 10  |-  ( s  e.  Q.  ->  ( A. p  e.  Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s
) ) )
1817ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( A. p  e. 
Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s ) ) )
1914, 18mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A  <Q  ( F `  s ) )
20 breq1 3940 . . . . . . . . 9  |-  ( ( s  +Q  s )  =  A  ->  (
( s  +Q  s
)  <Q  ( F `  s )  <->  A  <Q  ( F `  s ) ) )
2120adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( ( s  +Q  s )  <Q  ( F `  s )  <->  A 
<Q  ( F `  s
) ) )
2219, 21mpbird 166 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( s  +Q  s
)  <Q  ( F `  s ) )
23 oveq2 5790 . . . . . . . . 9  |-  ( q  =  s  ->  (
s  +Q  q )  =  ( s  +Q  s ) )
24 fveq2 5429 . . . . . . . . 9  |-  ( q  =  s  ->  ( F `  q )  =  ( F `  s ) )
2523, 24breq12d 3950 . . . . . . . 8  |-  ( q  =  s  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  s )  <Q  ( F `  s )
) )
2625rspcev 2793 . . . . . . 7  |-  ( ( s  e.  Q.  /\  ( s  +Q  s
)  <Q  ( F `  s ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
2713, 22, 26syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
28 oveq1 5789 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
2928breq1d 3947 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
3029rexbidv 2439 . . . . . . 7  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
31 cauappcvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
3231fveq2i 5432 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
33 nqex 7195 . . . . . . . . . 10  |-  Q.  e.  _V
3433rabex 4080 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
3533rabex 4080 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
3634, 35op1st 6052 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3732, 36eqtri 2161 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3830, 37elrab2 2847 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
3913, 27, 38sylanbrc 414 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4039ex 114 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4140reximdva 2537 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
4212, 41mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
43 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
4443, 5ffvelrnd 5564 . . . . 5  |-  ( ph  ->  ( F `  1Q )  e.  Q. )
45 addclnq 7207 . . . . 5  |-  ( ( ( F `  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  e. 
Q. )
4644, 5, 45syl2anc 409 . . . 4  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  e.  Q. )
47 addclnq 7207 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e. 
Q. )
4846, 5, 47syl2anc 409 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q. )
49 ltaddnq 7239 . . . . . 6  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  <Q 
( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q ) )
5046, 5, 49syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
51 fveq2 5429 . . . . . . . 8  |-  ( q  =  1Q  ->  ( F `  q )  =  ( F `  1Q ) )
52 id 19 . . . . . . . 8  |-  ( q  =  1Q  ->  q  =  1Q )
5351, 52oveq12d 5800 . . . . . . 7  |-  ( q  =  1Q  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 1Q )  +Q  1Q ) )
5453breq1d 3947 . . . . . 6  |-  ( q  =  1Q  ->  (
( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1Q )  +Q  1Q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5554rspcev 2793 . . . . 5  |-  ( ( 1Q  e.  Q.  /\  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
565, 50, 55syl2anc 409 . . . 4  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
57 breq2 3941 . . . . . 6  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5857rexbidv 2439 . . . . 5  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5931fveq2i 5432 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6034, 35op2nd 6053 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6159, 60eqtri 2161 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6258, 61elrab2 2847 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
6348, 56, 62sylanbrc 414 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
64 eleq1 2203 . . . 4  |-  ( r  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
6564rspcev 2793 . . 3  |-  ( ( ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6648, 63, 65syl2anc 409 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6742, 66jca 304 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421   <.cop 3535   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112   1Qc1q 7113    +Q cplq 7114    <Q cltq 7117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185
This theorem is referenced by:  cauappcvgprlemcl  7485
  Copyright terms: Public domain W3C validator