ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccat0 Unicode version

Theorem ccat0 11126
Description: The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
Assertion
Ref Expression
ccat0  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( S ++  T
)  =  (/)  <->  ( S  =  (/)  /\  T  =  (/) ) ) )

Proof of Theorem ccat0
StepHypRef Expression
1 ccatlen 11125 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S
)  +  ( `  T
) ) )
21eqeq1d 2238 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( `  ( S ++  T ) )  =  0  <->  ( ( `  S
)  +  ( `  T
) )  =  0 ) )
3 ccatclab 11124 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  ( A  u.  B ) )
4 wrdfin 11085 . . . 4  |-  ( ( S ++  T )  e. Word 
( A  u.  B
)  ->  ( S ++  T )  e.  Fin )
5 fihasheq0 11010 . . . 4  |-  ( ( S ++  T )  e. 
Fin  ->  ( ( `  ( S ++  T ) )  =  0  <->  ( S ++  T
)  =  (/) ) )
63, 4, 53syl 17 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( `  ( S ++  T ) )  =  0  <->  ( S ++  T
)  =  (/) ) )
7 lencl 11070 . . . . 5  |-  ( S  e. Word  A  ->  ( `  S )  e.  NN0 )
8 nn0re 9374 . . . . . 6  |-  ( ( `  S )  e.  NN0  ->  ( `  S )  e.  RR )
9 nn0ge0 9390 . . . . . 6  |-  ( ( `  S )  e.  NN0  ->  0  <_  ( `  S
) )
108, 9jca 306 . . . . 5  |-  ( ( `  S )  e.  NN0  ->  ( ( `  S
)  e.  RR  /\  0  <_  ( `  S )
) )
117, 10syl 14 . . . 4  |-  ( S  e. Word  A  ->  (
( `  S )  e.  RR  /\  0  <_ 
( `  S ) ) )
12 lencl 11070 . . . . 5  |-  ( T  e. Word  B  ->  ( `  T )  e.  NN0 )
13 nn0re 9374 . . . . . 6  |-  ( ( `  T )  e.  NN0  ->  ( `  T )  e.  RR )
14 nn0ge0 9390 . . . . . 6  |-  ( ( `  T )  e.  NN0  ->  0  <_  ( `  T
) )
1513, 14jca 306 . . . . 5  |-  ( ( `  T )  e.  NN0  ->  ( ( `  T
)  e.  RR  /\  0  <_  ( `  T )
) )
1612, 15syl 14 . . . 4  |-  ( T  e. Word  B  ->  (
( `  T )  e.  RR  /\  0  <_ 
( `  T ) ) )
17 add20 8617 . . . 4  |-  ( ( ( ( `  S
)  e.  RR  /\  0  <_  ( `  S )
)  /\  ( ( `  T )  e.  RR  /\  0  <_  ( `  T
) ) )  -> 
( ( ( `  S
)  +  ( `  T
) )  =  0  <-> 
( ( `  S
)  =  0  /\  ( `  T )  =  0 ) ) )
1811, 16, 17syl2an 289 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( ( `  S
)  +  ( `  T
) )  =  0  <-> 
( ( `  S
)  =  0  /\  ( `  T )  =  0 ) ) )
192, 6, 183bitr3d 218 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( S ++  T
)  =  (/)  <->  ( ( `  S )  =  0  /\  ( `  T
)  =  0 ) ) )
20 wrdfin 11085 . . . 4  |-  ( S  e. Word  A  ->  S  e.  Fin )
21 fihasheq0 11010 . . . 4  |-  ( S  e.  Fin  ->  (
( `  S )  =  0  <->  S  =  (/) ) )
2220, 21syl 14 . . 3  |-  ( S  e. Word  A  ->  (
( `  S )  =  0  <->  S  =  (/) ) )
23 wrdfin 11085 . . . 4  |-  ( T  e. Word  B  ->  T  e.  Fin )
24 fihasheq0 11010 . . . 4  |-  ( T  e.  Fin  ->  (
( `  T )  =  0  <->  T  =  (/) ) )
2523, 24syl 14 . . 3  |-  ( T  e. Word  B  ->  (
( `  T )  =  0  <->  T  =  (/) ) )
2622, 25bi2anan9 608 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( ( `  S
)  =  0  /\  ( `  T )  =  0 )  <->  ( S  =  (/)  /\  T  =  (/) ) ) )
2719, 26bitrd 188 1  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( S ++  T
)  =  (/)  <->  ( S  =  (/)  /\  T  =  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    u. cun 3195   (/)c0 3491   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   Fincfn 6885   RRcr 7994   0cc0 7995    + caddc 7998    <_ cle 8178   NN0cn0 9365  ♯chash 10992  Word cword 11066   ++ cconcat 11120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator