ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatlen Unicode version

Theorem ccatlen 11074
Description: The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
Assertion
Ref Expression
ccatlen  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S
)  +  ( `  T
) ) )

Proof of Theorem ccatlen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 wrdfin 11035 . . . 4  |-  ( S  e. Word  A  ->  S  e.  Fin )
2 wrdfin 11035 . . . 4  |-  ( T  e. Word  B  ->  T  e.  Fin )
3 ccatfvalfi 11071 . . . 4  |-  ( ( S  e.  Fin  /\  T  e.  Fin )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )
54fveq2d 5593 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( `  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) ) )
6 fvexg 5608 . . . . . . 7  |-  ( ( S  e. Word  A  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( S `  x )  e.  _V )
76adantlr 477 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( S `  x )  e.  _V )
8 simplr 528 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  T  e. Word  B
)
9 elfzoelz 10289 . . . . . . . . 9  |-  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T )
) )  ->  x  e.  ZZ )
109adantl 277 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  x  e.  ZZ )
11 lencl 11020 . . . . . . . . . 10  |-  ( S  e. Word  A  ->  ( `  S )  e.  NN0 )
1211ad2antrr 488 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( `  S )  e.  NN0 )
1312nn0zd 9513 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( `  S )  e.  ZZ )
1410, 13zsubcld 9520 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( x  -  ( `  S ) )  e.  ZZ )
15 fvexg 5608 . . . . . . 7  |-  ( ( T  e. Word  B  /\  ( x  -  ( `  S ) )  e.  ZZ )  ->  ( T `  ( x  -  ( `  S )
) )  e.  _V )
168, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( T `  ( x  -  ( `  S ) ) )  e.  _V )
177, 16ifexd 4539 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  if ( x  e.  ( 0..^ ( `  S ) ) ,  ( S `  x
) ,  ( T `
 ( x  -  ( `  S ) ) ) )  e.  _V )
1817ralrimiva 2580 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) )  e.  _V )
19 eqid 2206 . . . . 5  |-  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T )
) )  |->  if ( x  e.  ( 0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) ) )  =  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T )
) )  |->  if ( x  e.  ( 0..^ ( `  S )
) ,  ( S `
 x ) ,  ( T `  (
x  -  ( `  S
) ) ) ) )
2019fnmpt 5412 . . . 4  |-  ( A. x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) )  e.  _V  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  |->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) )  Fn  (
0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2118, 20syl 14 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  |->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) )  Fn  (
0..^ ( ( `  S
)  +  ( `  T
) ) ) )
22 0zd 9404 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  0  e.  ZZ )
2311adantr 276 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  S )  e.  NN0 )
2423nn0zd 9513 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  S )  e.  ZZ )
25 lencl 11020 . . . . . . 7  |-  ( T  e. Word  B  ->  ( `  T )  e.  NN0 )
2625nn0zd 9513 . . . . . 6  |-  ( T  e. Word  B  ->  ( `  T )  e.  ZZ )
2726adantl 277 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  T )  e.  ZZ )
2824, 27zaddcld 9519 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  ZZ )
29 fzofig 10599 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( ( `  S )  +  ( `  T )
)  e.  ZZ )  ->  ( 0..^ ( ( `  S )  +  ( `  T )
) )  e.  Fin )
3022, 28, 29syl2anc 411 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( 0..^ ( ( `  S )  +  ( `  T ) ) )  e.  Fin )
31 fihashfn 10967 . . 3  |-  ( ( ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  |->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) )  Fn  (
0..^ ( ( `  S
)  +  ( `  T
) ) )  /\  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  e. 
Fin )  ->  ( `  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  |->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )  =  ( `  ( 0..^ ( ( `  S )  +  ( `  T )
) ) ) )
3221, 30, 31syl2anc 411 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  ( x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) 
|->  if ( x  e.  ( 0..^ ( `  S
) ) ,  ( S `  x ) ,  ( T `  ( x  -  ( `  S ) ) ) ) ) )  =  ( `  ( 0..^ ( ( `  S )  +  ( `  T )
) ) ) )
33 nn0addcl 9350 . . . 4  |-  ( ( ( `  S )  e.  NN0  /\  ( `  T
)  e.  NN0 )  ->  ( ( `  S
)  +  ( `  T
) )  e.  NN0 )
3411, 25, 33syl2an 289 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  NN0 )
35 hashfzo0 10990 . . 3  |-  ( ( ( `  S )  +  ( `  T )
)  e.  NN0  ->  ( `  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) )  =  ( ( `  S )  +  ( `  T ) ) )
3634, 35syl 14 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  ( 0..^ ( ( `  S )  +  ( `  T )
) ) )  =  ( ( `  S
)  +  ( `  T
) ) )
375, 32, 363eqtrd 2243 1  |-  ( ( S  e. Word  A  /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S
)  +  ( `  T
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   ifcif 3575    |-> cmpt 4113    Fn wfn 5275   ` cfv 5280  (class class class)co 5957   Fincfn 6840   0cc0 7945    + caddc 7948    - cmin 8263   NN0cn0 9315   ZZcz 9392  ..^cfzo 10284  ♯chash 10942  Word cword 11016   ++ cconcat 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-concat 11070
This theorem is referenced by:  ccat0  11075  elfzelfzccat  11079  ccatsymb  11081  ccatass  11087  lswccatn0lsw  11090  ccatws1leng  11111  ccatswrd  11146  swrdccat2  11147  ccatpfx  11177  pfxccat1  11178  lenrevpfxcctswrd  11188  ccatopth  11192  ccatopth2  11193
  Copyright terms: Public domain W3C validator