ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1n Unicode version

Theorem climcvg1n 11151
Description: A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f  |-  ( ph  ->  F : NN --> CC )
climcvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climcvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
Assertion
Ref Expression
climcvg1n  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, n    ph, k, n

Proof of Theorem climcvg1n
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcvg1n.f . 2  |-  ( ph  ->  F : NN --> CC )
2 climcvg1n.c . 2  |-  ( ph  ->  C  e.  RR+ )
3 climcvg1n.cau . 2  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
4 eqid 2140 . 2  |-  ( x  e.  NN  |->  ( Re
`  ( F `  x ) ) )  =  ( x  e.  NN  |->  ( Re `  ( F `  x ) ) )
5 fveq2 5429 . . . 4  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
65fveq2d 5433 . . 3  |-  ( y  =  x  ->  (
Im `  ( F `  y ) )  =  ( Im `  ( F `  x )
) )
76cbvmptv 4032 . 2  |-  ( y  e.  NN  |->  ( Im
`  ( F `  y ) ) )  =  ( x  e.  NN  |->  ( Im `  ( F `  x ) ) )
8 eqid 2140 . 2  |-  ( x  e.  NN  |->  ( _i  x.  ( ( y  e.  NN  |->  ( Im
`  ( F `  y ) ) ) `
 x ) ) )  =  ( x  e.  NN  |->  ( _i  x.  ( ( y  e.  NN  |->  ( Im
`  ( F `  y ) ) ) `
 x ) ) )
91, 2, 3, 4, 7, 8climcvg1nlem 11150 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1481   A.wral 2417   class class class wbr 3937    |-> cmpt 3997   dom cdm 4547   -->wf 5127   ` cfv 5131  (class class class)co 5782   CCcc 7642   _ici 7646    x. cmul 7649    < clt 7824    - cmin 7957    / cdiv 8456   NNcn 8744   ZZ>=cuz 9350   RR+crp 9470   Recre 10644   Imcim 10645   abscabs 10801    ~~> cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  cvgratnn  11332  cvgcmp2n  13403
  Copyright terms: Public domain W3C validator