ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcvg1n GIF version

Theorem climcvg1n 10560
Description: A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climcvg1n.f (𝜑𝐹:ℕ⟶ℂ)
climcvg1n.c (𝜑𝐶 ∈ ℝ+)
climcvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
Assertion
Ref Expression
climcvg1n (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climcvg1n
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climcvg1n.f . 2 (𝜑𝐹:ℕ⟶ℂ)
2 climcvg1n.c . 2 (𝜑𝐶 ∈ ℝ+)
3 climcvg1n.cau . 2 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
4 eqid 2083 . 2 (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥))) = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))
5 fveq2 5252 . . . 4 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
65fveq2d 5256 . . 3 (𝑦 = 𝑥 → (ℑ‘(𝐹𝑦)) = (ℑ‘(𝐹𝑥)))
76cbvmptv 3899 . 2 (𝑦 ∈ ℕ ↦ (ℑ‘(𝐹𝑦))) = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))
8 eqid 2083 . 2 (𝑥 ∈ ℕ ↦ (i · ((𝑦 ∈ ℕ ↦ (ℑ‘(𝐹𝑦)))‘𝑥))) = (𝑥 ∈ ℕ ↦ (i · ((𝑦 ∈ ℕ ↦ (ℑ‘(𝐹𝑦)))‘𝑥)))
91, 2, 3, 4, 7, 8climcvg1nlem 10559 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434  wral 2353   class class class wbr 3811  cmpt 3865  dom cdm 4400  wf 4964  cfv 4968  (class class class)co 5590  cc 7250  ici 7254   · cmul 7257   < clt 7424  cmin 7555   / cdiv 8036  cn 8315  cuz 8913  +crp 9028  cre 10100  cim 10101  abscabs 10256  cli 10490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364  ax-pre-mulext 7365  ax-arch 7366  ax-caucvg 7367
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-f1 4973  df-fo 4974  df-f1o 4975  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-1st 5845  df-2nd 5846  df-recs 6001  df-frec 6087  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958  df-div 8037  df-inn 8316  df-2 8374  df-3 8375  df-4 8376  df-n0 8565  df-z 8646  df-uz 8914  df-rp 9029  df-iseq 9740  df-iexp 9791  df-cj 10102  df-re 10103  df-im 10104  df-rsqrt 10257  df-abs 10258  df-clim 10491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator