| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elnn0uz | GIF version | ||
| Description: A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
| Ref | Expression |
|---|---|
| elnn0uz | ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9753 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 1 | eleq2i 2296 | 1 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 ‘cfv 5317 0cc0 7995 ℕ0cn0 9365 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: elnn0dc 9802 elfz2nn0 10304 4fvwrd4 10332 2ffzeq 10333 elfzo0 10378 elfzonn0 10382 elfzom1elp1fzo 10403 nn0sinds 10663 hashfz1 11000 hashfz0 11042 resunimafz0 11048 pfxwrdsymbg 11217 swrdccatin2 11256 pfxccatin12lem2 11258 pfxccatin12lem3 11259 bcxmas 11995 geolim 12017 mertenslem2 12042 mertensabs 12043 efcvgfsum 12173 ege2le3 12177 efcj 12179 effsumlt 12198 efgt1p2 12201 efgt1p 12202 bitsmod 12462 4sqlem19 12927 wlkm 16038 |
| Copyright terms: Public domain | W3C validator |