| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isridl | GIF version | ||
| Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| isridl.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) |
| isridl.b | ⊢ 𝐵 = (Base‘𝑅) |
| isridl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isridl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | 1 | opprring 13885 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 3 | isridl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
| 4 | eqid 2206 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
| 5 | eqid 2206 | . . . 4 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 6 | 3, 4, 5 | dflidl2 14294 | . . 3 ⊢ ((oppr‘𝑅) ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
| 7 | 2, 6 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
| 8 | 1 | opprsubgg 13890 | . . . . 5 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr‘𝑅))) |
| 9 | 8 | eqcomd 2212 | . . . 4 ⊢ (𝑅 ∈ Ring → (SubGrp‘(oppr‘𝑅)) = (SubGrp‘𝑅)) |
| 10 | 9 | eleq2d 2276 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅))) |
| 11 | isridl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 1, 11 | opprbasg 13881 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr‘𝑅))) |
| 13 | 12 | eqcomd 2212 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘(oppr‘𝑅)) = 𝐵) |
| 14 | 12 | eleq2d 2276 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
| 15 | 14 | pm5.32i 454 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
| 16 | vex 2776 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 17 | vex 2776 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 18 | isridl.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
| 19 | 11, 18, 1, 5 | opprmulg 13877 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
| 20 | 16, 17, 19 | mp3an23 1342 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
| 21 | 20 | eleq1d 2275 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
| 22 | 21 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
| 23 | 22 | ralbidva 2503 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 24 | 15, 23 | sylbir 135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅))) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 25 | 13, 24 | raleqbidva 2721 | . . 3 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 26 | 10, 25 | anbi12d 473 | . 2 ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| 27 | 7, 26 | bitrd 188 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 .rcmulr 12954 SubGrpcsubg 13547 Ringcrg 13802 opprcoppr 13873 LIdealclidl 14273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-subg 13550 df-cmn 13666 df-abl 13667 df-mgp 13727 df-rng 13739 df-ur 13766 df-ring 13804 df-oppr 13874 df-subrg 14025 df-lmod 14095 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |