ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl GIF version

Theorem isridl 14003
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u 𝑈 = (LIdeal‘(oppr𝑅))
isridl.b 𝐵 = (Base‘𝑅)
isridl.t · = (.r𝑅)
Assertion
Ref Expression
isridl (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2193 . . . 4 (oppr𝑅) = (oppr𝑅)
21opprring 13578 . . 3 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
3 isridl.u . . . 4 𝑈 = (LIdeal‘(oppr𝑅))
4 eqid 2193 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
5 eqid 2193 . . . 4 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
63, 4, 5dflidl2 13987 . . 3 ((oppr𝑅) ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼)))
72, 6syl 14 . 2 (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼)))
81opprsubgg 13583 . . . . 5 (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr𝑅)))
98eqcomd 2199 . . . 4 (𝑅 ∈ Ring → (SubGrp‘(oppr𝑅)) = (SubGrp‘𝑅))
109eleq2d 2263 . . 3 (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅)))
11 isridl.b . . . . . 6 𝐵 = (Base‘𝑅)
121, 11opprbasg 13574 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr𝑅)))
1312eqcomd 2199 . . . 4 (𝑅 ∈ Ring → (Base‘(oppr𝑅)) = 𝐵)
1412eleq2d 2263 . . . . . 6 (𝑅 ∈ Ring → (𝑥𝐵𝑥 ∈ (Base‘(oppr𝑅))))
1514pm5.32i 454 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅))))
16 vex 2763 . . . . . . . . 9 𝑥 ∈ V
17 vex 2763 . . . . . . . . 9 𝑦 ∈ V
18 isridl.t . . . . . . . . . 10 · = (.r𝑅)
1911, 18, 1, 5opprmulg 13570 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
2016, 17, 19mp3an23 1340 . . . . . . . 8 (𝑅 ∈ Ring → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
2120eleq1d 2262 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
2221ad2antrr 488 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
2322ralbidva 2490 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2415, 23sylbir 135 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅))) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2513, 24raleqbidva 2708 . . 3 (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2610, 25anbi12d 473 . 2 (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
277, 26bitrd 188 1 (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cfv 5255  (class class class)co 5919  Basecbs 12621  .rcmulr 12699  SubGrpcsubg 13240  Ringcrg 13495  opprcoppr 13566  LIdealclidl 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-ring 13497  df-oppr 13567  df-subrg 13718  df-lmod 13788  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator