| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isridl | GIF version | ||
| Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| isridl.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) |
| isridl.b | ⊢ 𝐵 = (Base‘𝑅) |
| isridl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isridl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | 1 | opprring 13711 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 3 | isridl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
| 4 | eqid 2196 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
| 5 | eqid 2196 | . . . 4 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 6 | 3, 4, 5 | dflidl2 14120 | . . 3 ⊢ ((oppr‘𝑅) ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
| 7 | 2, 6 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
| 8 | 1 | opprsubgg 13716 | . . . . 5 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr‘𝑅))) |
| 9 | 8 | eqcomd 2202 | . . . 4 ⊢ (𝑅 ∈ Ring → (SubGrp‘(oppr‘𝑅)) = (SubGrp‘𝑅)) |
| 10 | 9 | eleq2d 2266 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅))) |
| 11 | isridl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 1, 11 | opprbasg 13707 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr‘𝑅))) |
| 13 | 12 | eqcomd 2202 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘(oppr‘𝑅)) = 𝐵) |
| 14 | 12 | eleq2d 2266 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
| 15 | 14 | pm5.32i 454 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
| 16 | vex 2766 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 17 | vex 2766 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 18 | isridl.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
| 19 | 11, 18, 1, 5 | opprmulg 13703 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
| 20 | 16, 17, 19 | mp3an23 1340 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
| 21 | 20 | eleq1d 2265 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
| 22 | 21 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
| 23 | 22 | ralbidva 2493 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 24 | 15, 23 | sylbir 135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅))) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 25 | 13, 24 | raleqbidva 2711 | . . 3 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 26 | 10, 25 | anbi12d 473 | . 2 ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| 27 | 7, 26 | bitrd 188 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 .rcmulr 12781 SubGrpcsubg 13373 Ringcrg 13628 opprcoppr 13699 LIdealclidl 14099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-tpos 6312 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-subg 13376 df-cmn 13492 df-abl 13493 df-mgp 13553 df-rng 13565 df-ur 13592 df-ring 13630 df-oppr 13700 df-subrg 13851 df-lmod 13921 df-lssm 13985 df-sra 14067 df-rgmod 14068 df-lidl 14101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |