ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl GIF version

Theorem isridl 14136
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u 𝑈 = (LIdeal‘(oppr𝑅))
isridl.b 𝐵 = (Base‘𝑅)
isridl.t · = (.r𝑅)
Assertion
Ref Expression
isridl (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2196 . . . 4 (oppr𝑅) = (oppr𝑅)
21opprring 13711 . . 3 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
3 isridl.u . . . 4 𝑈 = (LIdeal‘(oppr𝑅))
4 eqid 2196 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
5 eqid 2196 . . . 4 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
63, 4, 5dflidl2 14120 . . 3 ((oppr𝑅) ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼)))
72, 6syl 14 . 2 (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼)))
81opprsubgg 13716 . . . . 5 (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr𝑅)))
98eqcomd 2202 . . . 4 (𝑅 ∈ Ring → (SubGrp‘(oppr𝑅)) = (SubGrp‘𝑅))
109eleq2d 2266 . . 3 (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅)))
11 isridl.b . . . . . 6 𝐵 = (Base‘𝑅)
121, 11opprbasg 13707 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr𝑅)))
1312eqcomd 2202 . . . 4 (𝑅 ∈ Ring → (Base‘(oppr𝑅)) = 𝐵)
1412eleq2d 2266 . . . . . 6 (𝑅 ∈ Ring → (𝑥𝐵𝑥 ∈ (Base‘(oppr𝑅))))
1514pm5.32i 454 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅))))
16 vex 2766 . . . . . . . . 9 𝑥 ∈ V
17 vex 2766 . . . . . . . . 9 𝑦 ∈ V
18 isridl.t . . . . . . . . . 10 · = (.r𝑅)
1911, 18, 1, 5opprmulg 13703 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
2016, 17, 19mp3an23 1340 . . . . . . . 8 (𝑅 ∈ Ring → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
2120eleq1d 2265 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
2221ad2antrr 488 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
2322ralbidva 2493 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2415, 23sylbir 135 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅))) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2513, 24raleqbidva 2711 . . 3 (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2610, 25anbi12d 473 . 2 (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
277, 26bitrd 188 1 (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cfv 5259  (class class class)co 5925  Basecbs 12703  .rcmulr 12781  SubGrpcsubg 13373  Ringcrg 13628  opprcoppr 13699  LIdealclidl 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-ur 13592  df-ring 13630  df-oppr 13700  df-subrg 13851  df-lmod 13921  df-lssm 13985  df-sra 14067  df-rgmod 14068  df-lidl 14101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator