ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isridl GIF version

Theorem isridl 14138
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
Hypotheses
Ref Expression
isridl.u 𝑈 = (LIdeal‘(oppr𝑅))
isridl.b 𝐵 = (Base‘𝑅)
isridl.t · = (.r𝑅)
Assertion
Ref Expression
isridl (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem isridl
StepHypRef Expression
1 eqid 2196 . . . 4 (oppr𝑅) = (oppr𝑅)
21opprring 13713 . . 3 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
3 isridl.u . . . 4 𝑈 = (LIdeal‘(oppr𝑅))
4 eqid 2196 . . . 4 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
5 eqid 2196 . . . 4 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
63, 4, 5dflidl2 14122 . . 3 ((oppr𝑅) ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼)))
72, 6syl 14 . 2 (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼)))
81opprsubgg 13718 . . . . 5 (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr𝑅)))
98eqcomd 2202 . . . 4 (𝑅 ∈ Ring → (SubGrp‘(oppr𝑅)) = (SubGrp‘𝑅))
109eleq2d 2266 . . 3 (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅)))
11 isridl.b . . . . . 6 𝐵 = (Base‘𝑅)
121, 11opprbasg 13709 . . . . 5 (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr𝑅)))
1312eqcomd 2202 . . . 4 (𝑅 ∈ Ring → (Base‘(oppr𝑅)) = 𝐵)
1412eleq2d 2266 . . . . . 6 (𝑅 ∈ Ring → (𝑥𝐵𝑥 ∈ (Base‘(oppr𝑅))))
1514pm5.32i 454 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅))))
16 vex 2766 . . . . . . . . 9 𝑥 ∈ V
17 vex 2766 . . . . . . . . 9 𝑦 ∈ V
18 isridl.t . . . . . . . . . 10 · = (.r𝑅)
1911, 18, 1, 5opprmulg 13705 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
2016, 17, 19mp3an23 1340 . . . . . . . 8 (𝑅 ∈ Ring → (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦 · 𝑥))
2120eleq1d 2265 . . . . . . 7 (𝑅 ∈ Ring → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
2221ad2antrr 488 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼))
2322ralbidva 2493 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2415, 23sylbir 135 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr𝑅))) → (∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2513, 24raleqbidva 2711 . . 3 (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
2610, 25anbi12d 473 . 2 (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr𝑅))∀𝑦𝐼 (𝑥(.r‘(oppr𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
277, 26bitrd 188 1 (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cfv 5259  (class class class)co 5925  Basecbs 12705  .rcmulr 12783  SubGrpcsubg 13375  Ringcrg 13630  opprcoppr 13701  LIdealclidl 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-sbg 13209  df-subg 13378  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-ur 13594  df-ring 13632  df-oppr 13702  df-subrg 13853  df-lmod 13923  df-lssm 13987  df-sra 14069  df-rgmod 14070  df-lidl 14103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator