| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isridl | GIF version | ||
| Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
| Ref | Expression |
|---|---|
| isridl.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) |
| isridl.b | ⊢ 𝐵 = (Base‘𝑅) |
| isridl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isridl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 2 | 1 | opprring 14008 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
| 3 | isridl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
| 4 | eqid 2209 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
| 5 | eqid 2209 | . . . 4 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 6 | 3, 4, 5 | dflidl2 14417 | . . 3 ⊢ ((oppr‘𝑅) ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
| 7 | 2, 6 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
| 8 | 1 | opprsubgg 14013 | . . . . 5 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr‘𝑅))) |
| 9 | 8 | eqcomd 2215 | . . . 4 ⊢ (𝑅 ∈ Ring → (SubGrp‘(oppr‘𝑅)) = (SubGrp‘𝑅)) |
| 10 | 9 | eleq2d 2279 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅))) |
| 11 | isridl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 12 | 1, 11 | opprbasg 14004 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr‘𝑅))) |
| 13 | 12 | eqcomd 2215 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘(oppr‘𝑅)) = 𝐵) |
| 14 | 12 | eleq2d 2279 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
| 15 | 14 | pm5.32i 454 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
| 16 | vex 2782 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
| 17 | vex 2782 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 18 | isridl.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
| 19 | 11, 18, 1, 5 | opprmulg 14000 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
| 20 | 16, 17, 19 | mp3an23 1344 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
| 21 | 20 | eleq1d 2278 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
| 22 | 21 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
| 23 | 22 | ralbidva 2506 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 24 | 15, 23 | sylbir 135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅))) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 25 | 13, 24 | raleqbidva 2726 | . . 3 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
| 26 | 10, 25 | anbi12d 473 | . 2 ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| 27 | 7, 26 | bitrd 188 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 ∀wral 2488 Vcvv 2779 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 .rcmulr 13077 SubGrpcsubg 13670 Ringcrg 13925 opprcoppr 13996 LIdealclidl 14396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-tpos 6361 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-iress 13006 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-sbg 13504 df-subg 13673 df-cmn 13789 df-abl 13790 df-mgp 13850 df-rng 13862 df-ur 13889 df-ring 13927 df-oppr 13997 df-subrg 14148 df-lmod 14218 df-lssm 14282 df-sra 14364 df-rgmod 14365 df-lidl 14398 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |