![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isridl | GIF version |
Description: A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) |
Ref | Expression |
---|---|
isridl.u | ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) |
isridl.b | ⊢ 𝐵 = (Base‘𝑅) |
isridl.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isridl | ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 | . . . 4 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
2 | 1 | opprring 13578 | . . 3 ⊢ (𝑅 ∈ Ring → (oppr‘𝑅) ∈ Ring) |
3 | isridl.u | . . . 4 ⊢ 𝑈 = (LIdeal‘(oppr‘𝑅)) | |
4 | eqid 2193 | . . . 4 ⊢ (Base‘(oppr‘𝑅)) = (Base‘(oppr‘𝑅)) | |
5 | eqid 2193 | . . . 4 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
6 | 3, 4, 5 | dflidl2 13987 | . . 3 ⊢ ((oppr‘𝑅) ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
7 | 2, 6 | syl 14 | . 2 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼))) |
8 | 1 | opprsubgg 13583 | . . . . 5 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘(oppr‘𝑅))) |
9 | 8 | eqcomd 2199 | . . . 4 ⊢ (𝑅 ∈ Ring → (SubGrp‘(oppr‘𝑅)) = (SubGrp‘𝑅)) |
10 | 9 | eleq2d 2263 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ↔ 𝐼 ∈ (SubGrp‘𝑅))) |
11 | isridl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
12 | 1, 11 | opprbasg 13574 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(oppr‘𝑅))) |
13 | 12 | eqcomd 2199 | . . . 4 ⊢ (𝑅 ∈ Ring → (Base‘(oppr‘𝑅)) = 𝐵) |
14 | 12 | eleq2d 2263 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
15 | 14 | pm5.32i 454 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ↔ (𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅)))) |
16 | vex 2763 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
17 | vex 2763 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
18 | isridl.t | . . . . . . . . . 10 ⊢ · = (.r‘𝑅) | |
19 | 11, 18, 1, 5 | opprmulg 13570 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
20 | 16, 17, 19 | mp3an23 1340 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦 · 𝑥)) |
21 | 20 | eleq1d 2262 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
22 | 21 | ad2antrr 488 | . . . . . 6 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ (𝑦 · 𝑥) ∈ 𝐼)) |
23 | 22 | ralbidva 2490 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
24 | 15, 23 | sylbir 135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘(oppr‘𝑅))) → (∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
25 | 13, 24 | raleqbidva 2708 | . . 3 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) |
26 | 10, 25 | anbi12d 473 | . 2 ⊢ (𝑅 ∈ Ring → ((𝐼 ∈ (SubGrp‘(oppr‘𝑅)) ∧ ∀𝑥 ∈ (Base‘(oppr‘𝑅))∀𝑦 ∈ 𝐼 (𝑥(.r‘(oppr‘𝑅))𝑦) ∈ 𝐼) ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
27 | 7, 26 | bitrd 188 | 1 ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∀wral 2472 Vcvv 2760 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 .rcmulr 12699 SubGrpcsubg 13240 Ringcrg 13495 opprcoppr 13566 LIdealclidl 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-subg 13243 df-cmn 13359 df-abl 13360 df-mgp 13420 df-rng 13432 df-ur 13459 df-ring 13497 df-oppr 13567 df-subrg 13718 df-lmod 13788 df-lssm 13852 df-sra 13934 df-rgmod 13935 df-lidl 13968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |