ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswrdiz Unicode version

Theorem iswrdiz 11018
Description: A zero-based sequence is a word. In iswrdinn0 11016 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.)
Assertion
Ref Expression
iswrdiz  |-  ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  W  e. Word  S )

Proof of Theorem iswrdiz
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  W :
( 0..^ L ) --> S )
2 simplr 528 . . . 4  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  L  e.  ZZ )
3 0red 8088 . . . . 5  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  0  e.  RR )
42zred 9510 . . . . 5  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  L  e.  RR )
5 simpr 110 . . . . 5  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  0  <  L )
63, 4, 5ltled 8206 . . . 4  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  0  <_  L )
7 elnn0z 9400 . . . 4  |-  ( L  e.  NN0  <->  ( L  e.  ZZ  /\  0  <_  L ) )
82, 6, 7sylanbrc 417 . . 3  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  L  e.  NN0 )
9 iswrdinn0 11016 . . 3  |-  ( ( W : ( 0..^ L ) --> S  /\  L  e.  NN0 )  ->  W  e. Word  S )
101, 8, 9syl2anc 411 . 2  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  <  L
)  ->  W  e. Word  S )
11 simpll 527 . . 3  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  =  L )  ->  W :
( 0..^ L ) --> S )
12 0nn0 9325 . . . . 5  |-  0  e.  NN0
13 eleq1 2269 . . . . 5  |-  ( 0  =  L  ->  (
0  e.  NN0  <->  L  e.  NN0 ) )
1412, 13mpbii 148 . . . 4  |-  ( 0  =  L  ->  L  e.  NN0 )
1514adantl 277 . . 3  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  =  L )  ->  L  e.  NN0 )
1611, 15, 9syl2anc 411 . 2  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  0  =  L )  ->  W  e. Word  S )
17 simpll 527 . . . 4  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  W :
( 0..^ L ) --> S )
18 simplr 528 . . . . . . . . 9  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  L  e.  ZZ )
1918zred 9510 . . . . . . . 8  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  L  e.  RR )
20 0red 8088 . . . . . . . 8  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  0  e.  RR )
21 simpr 110 . . . . . . . 8  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  L  <  0 )
2219, 20, 21ltled 8206 . . . . . . 7  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  L  <_  0 )
23 0z 9398 . . . . . . . 8  |-  0  e.  ZZ
24 fzon 10304 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  L  e.  ZZ )  ->  ( L  <_  0  <->  ( 0..^ L )  =  (/) ) )
2523, 18, 24sylancr 414 . . . . . . 7  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  ( L  <_  0  <->  ( 0..^ L )  =  (/) ) )
2622, 25mpbid 147 . . . . . 6  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  ( 0..^ L )  =  (/) )
27 fzo0 10307 . . . . . 6  |-  ( 0..^ 0 )  =  (/)
2826, 27eqtr4di 2257 . . . . 5  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  ( 0..^ L )  =  ( 0..^ 0 ) )
2928feq2d 5422 . . . 4  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  ( W : ( 0..^ L ) --> S  <->  W :
( 0..^ 0 ) --> S ) )
3017, 29mpbid 147 . . 3  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  W :
( 0..^ 0 ) --> S )
31 iswrdinn0 11016 . . 3  |-  ( ( W : ( 0..^ 0 ) --> S  /\  0  e.  NN0 )  ->  W  e. Word  S )
3230, 12, 31sylancl 413 . 2  |-  ( ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  /\  L  <  0
)  ->  W  e. Word  S )
33 ztri3or 9430 . . . 4  |-  ( ( 0  e.  ZZ  /\  L  e.  ZZ )  ->  ( 0  <  L  \/  0  =  L  \/  L  <  0
) )
3423, 33mpan 424 . . 3  |-  ( L  e.  ZZ  ->  (
0  <  L  \/  0  =  L  \/  L  <  0 ) )
3534adantl 277 . 2  |-  ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  ( 0  <  L  \/  0  =  L  \/  L  <  0
) )
3610, 16, 32, 35mpjao3dan 1320 1  |-  ( ( W : ( 0..^ L ) --> S  /\  L  e.  ZZ )  ->  W  e. Word  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2177   (/)c0 3464   class class class wbr 4050   -->wf 5275  (class class class)co 5956   0cc0 7940    < clt 8122    <_ cle 8123   NN0cn0 9310   ZZcz 9387  ..^cfzo 10279  Word cword 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-en 6840  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-word 11012
This theorem is referenced by:  wrdred1  11053  swrdclg  11121
  Copyright terms: Public domain W3C validator