| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswrdiz | GIF version | ||
| Description: A zero-based sequence is a word. In iswrdinn0 11084 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.) |
| Ref | Expression |
|---|---|
| iswrdiz | ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝑊:(0..^𝐿)⟶𝑆) | |
| 2 | simplr 528 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℤ) | |
| 3 | 0red 8155 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 ∈ ℝ) | |
| 4 | 2 | zred 9577 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℝ) |
| 5 | simpr 110 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 < 𝐿) | |
| 6 | 3, 4, 5 | ltled 8273 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 ≤ 𝐿) |
| 7 | elnn0z 9467 | . . . 4 ⊢ (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿)) | |
| 8 | 2, 6, 7 | sylanbrc 417 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℕ0) |
| 9 | iswrdinn0 11084 | . . 3 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |
| 10 | 1, 8, 9 | syl2anc 411 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝑊 ∈ Word 𝑆) |
| 11 | simpll 527 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝑊:(0..^𝐿)⟶𝑆) | |
| 12 | 0nn0 9392 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | eleq1 2292 | . . . . 5 ⊢ (0 = 𝐿 → (0 ∈ ℕ0 ↔ 𝐿 ∈ ℕ0)) | |
| 14 | 12, 13 | mpbii 148 | . . . 4 ⊢ (0 = 𝐿 → 𝐿 ∈ ℕ0) |
| 15 | 14 | adantl 277 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝐿 ∈ ℕ0) |
| 16 | 11, 15, 9 | syl2anc 411 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝑊 ∈ Word 𝑆) |
| 17 | simpll 527 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊:(0..^𝐿)⟶𝑆) | |
| 18 | simplr 528 | . . . . . . . . 9 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ∈ ℤ) | |
| 19 | 18 | zred 9577 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ∈ ℝ) |
| 20 | 0red 8155 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 0 ∈ ℝ) | |
| 21 | simpr 110 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 < 0) | |
| 22 | 19, 20, 21 | ltled 8273 | . . . . . . 7 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ≤ 0) |
| 23 | 0z 9465 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 24 | fzon 10371 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 0 ↔ (0..^𝐿) = ∅)) | |
| 25 | 23, 18, 24 | sylancr 414 | . . . . . . 7 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (𝐿 ≤ 0 ↔ (0..^𝐿) = ∅)) |
| 26 | 22, 25 | mpbid 147 | . . . . . 6 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (0..^𝐿) = ∅) |
| 27 | fzo0 10374 | . . . . . 6 ⊢ (0..^0) = ∅ | |
| 28 | 26, 27 | eqtr4di 2280 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (0..^𝐿) = (0..^0)) |
| 29 | 28 | feq2d 5461 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (𝑊:(0..^𝐿)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
| 30 | 17, 29 | mpbid 147 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊:(0..^0)⟶𝑆) |
| 31 | iswrdinn0 11084 | . . 3 ⊢ ((𝑊:(0..^0)⟶𝑆 ∧ 0 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |
| 32 | 30, 12, 31 | sylancl 413 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊 ∈ Word 𝑆) |
| 33 | ztri3or 9497 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) | |
| 34 | 23, 33 | mpan 424 | . . 3 ⊢ (𝐿 ∈ ℤ → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) |
| 35 | 34 | adantl 277 | . 2 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) |
| 36 | 10, 16, 32, 35 | mpjao3dan 1341 | 1 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 1001 = wceq 1395 ∈ wcel 2200 ∅c0 3491 class class class wbr 4083 ⟶wf 5314 (class class class)co 6007 0cc0 8007 < clt 8189 ≤ cle 8190 ℕ0cn0 9377 ℤcz 9454 ..^cfzo 10346 Word cword 11079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-word 11080 |
| This theorem is referenced by: wrdred1 11122 swrdclg 11190 |
| Copyright terms: Public domain | W3C validator |