| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswrdiz | GIF version | ||
| Description: A zero-based sequence is a word. In iswrdinn0 10942 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.) |
| Ref | Expression |
|---|---|
| iswrdiz | ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝑊:(0..^𝐿)⟶𝑆) | |
| 2 | simplr 528 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℤ) | |
| 3 | 0red 8029 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 ∈ ℝ) | |
| 4 | 2 | zred 9450 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℝ) |
| 5 | simpr 110 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 < 𝐿) | |
| 6 | 3, 4, 5 | ltled 8147 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 ≤ 𝐿) |
| 7 | elnn0z 9341 | . . . 4 ⊢ (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿)) | |
| 8 | 2, 6, 7 | sylanbrc 417 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℕ0) |
| 9 | iswrdinn0 10942 | . . 3 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |
| 10 | 1, 8, 9 | syl2anc 411 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝑊 ∈ Word 𝑆) |
| 11 | simpll 527 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝑊:(0..^𝐿)⟶𝑆) | |
| 12 | 0nn0 9266 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | eleq1 2259 | . . . . 5 ⊢ (0 = 𝐿 → (0 ∈ ℕ0 ↔ 𝐿 ∈ ℕ0)) | |
| 14 | 12, 13 | mpbii 148 | . . . 4 ⊢ (0 = 𝐿 → 𝐿 ∈ ℕ0) |
| 15 | 14 | adantl 277 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝐿 ∈ ℕ0) |
| 16 | 11, 15, 9 | syl2anc 411 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝑊 ∈ Word 𝑆) |
| 17 | simpll 527 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊:(0..^𝐿)⟶𝑆) | |
| 18 | simplr 528 | . . . . . . . . 9 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ∈ ℤ) | |
| 19 | 18 | zred 9450 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ∈ ℝ) |
| 20 | 0red 8029 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 0 ∈ ℝ) | |
| 21 | simpr 110 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 < 0) | |
| 22 | 19, 20, 21 | ltled 8147 | . . . . . . 7 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ≤ 0) |
| 23 | 0z 9339 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
| 24 | fzon 10244 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 0 ↔ (0..^𝐿) = ∅)) | |
| 25 | 23, 18, 24 | sylancr 414 | . . . . . . 7 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (𝐿 ≤ 0 ↔ (0..^𝐿) = ∅)) |
| 26 | 22, 25 | mpbid 147 | . . . . . 6 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (0..^𝐿) = ∅) |
| 27 | fzo0 10246 | . . . . . 6 ⊢ (0..^0) = ∅ | |
| 28 | 26, 27 | eqtr4di 2247 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (0..^𝐿) = (0..^0)) |
| 29 | 28 | feq2d 5396 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (𝑊:(0..^𝐿)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
| 30 | 17, 29 | mpbid 147 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊:(0..^0)⟶𝑆) |
| 31 | iswrdinn0 10942 | . . 3 ⊢ ((𝑊:(0..^0)⟶𝑆 ∧ 0 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |
| 32 | 30, 12, 31 | sylancl 413 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊 ∈ Word 𝑆) |
| 33 | ztri3or 9371 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) | |
| 34 | 23, 33 | mpan 424 | . . 3 ⊢ (𝐿 ∈ ℤ → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) |
| 35 | 34 | adantl 277 | . 2 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) |
| 36 | 10, 16, 32, 35 | mpjao3dan 1318 | 1 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ∅c0 3451 class class class wbr 4034 ⟶wf 5255 (class class class)co 5923 0cc0 7881 < clt 8063 ≤ cle 8064 ℕ0cn0 9251 ℤcz 9328 ..^cfzo 10219 Word cword 10937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-1o 6475 df-er 6593 df-en 6801 df-fin 6803 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-inn 8993 df-n0 9252 df-z 9329 df-uz 9604 df-fz 10086 df-fzo 10220 df-word 10938 |
| This theorem is referenced by: wrdred1 10979 |
| Copyright terms: Public domain | W3C validator |