![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iswrdiz | GIF version |
Description: A zero-based sequence is a word. In iswrdinn0 10909 we can specify a length as an nonnegative integer. However, it will occasionally be helpful to allow a negative length, as well as zero, to specify an empty sequence. (Contributed by Jim Kingdon, 18-Aug-2025.) |
Ref | Expression |
---|---|
iswrdiz | ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝑊:(0..^𝐿)⟶𝑆) | |
2 | simplr 528 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℤ) | |
3 | 0red 8010 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 ∈ ℝ) | |
4 | 2 | zred 9429 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℝ) |
5 | simpr 110 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 < 𝐿) | |
6 | 3, 4, 5 | ltled 8128 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 0 ≤ 𝐿) |
7 | elnn0z 9320 | . . . 4 ⊢ (𝐿 ∈ ℕ0 ↔ (𝐿 ∈ ℤ ∧ 0 ≤ 𝐿)) | |
8 | 2, 6, 7 | sylanbrc 417 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝐿 ∈ ℕ0) |
9 | iswrdinn0 10909 | . . 3 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |
10 | 1, 8, 9 | syl2anc 411 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 < 𝐿) → 𝑊 ∈ Word 𝑆) |
11 | simpll 527 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝑊:(0..^𝐿)⟶𝑆) | |
12 | 0nn0 9245 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | eleq1 2256 | . . . . 5 ⊢ (0 = 𝐿 → (0 ∈ ℕ0 ↔ 𝐿 ∈ ℕ0)) | |
14 | 12, 13 | mpbii 148 | . . . 4 ⊢ (0 = 𝐿 → 𝐿 ∈ ℕ0) |
15 | 14 | adantl 277 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝐿 ∈ ℕ0) |
16 | 11, 15, 9 | syl2anc 411 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 0 = 𝐿) → 𝑊 ∈ Word 𝑆) |
17 | simpll 527 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊:(0..^𝐿)⟶𝑆) | |
18 | simplr 528 | . . . . . . . . 9 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ∈ ℤ) | |
19 | 18 | zred 9429 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ∈ ℝ) |
20 | 0red 8010 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 0 ∈ ℝ) | |
21 | simpr 110 | . . . . . . . 8 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 < 0) | |
22 | 19, 20, 21 | ltled 8128 | . . . . . . 7 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝐿 ≤ 0) |
23 | 0z 9318 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
24 | fzon 10223 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 0 ↔ (0..^𝐿) = ∅)) | |
25 | 23, 18, 24 | sylancr 414 | . . . . . . 7 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (𝐿 ≤ 0 ↔ (0..^𝐿) = ∅)) |
26 | 22, 25 | mpbid 147 | . . . . . 6 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (0..^𝐿) = ∅) |
27 | fzo0 10225 | . . . . . 6 ⊢ (0..^0) = ∅ | |
28 | 26, 27 | eqtr4di 2244 | . . . . 5 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (0..^𝐿) = (0..^0)) |
29 | 28 | feq2d 5383 | . . . 4 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → (𝑊:(0..^𝐿)⟶𝑆 ↔ 𝑊:(0..^0)⟶𝑆)) |
30 | 17, 29 | mpbid 147 | . . 3 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊:(0..^0)⟶𝑆) |
31 | iswrdinn0 10909 | . . 3 ⊢ ((𝑊:(0..^0)⟶𝑆 ∧ 0 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) | |
32 | 30, 12, 31 | sylancl 413 | . 2 ⊢ (((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) ∧ 𝐿 < 0) → 𝑊 ∈ Word 𝑆) |
33 | ztri3or 9350 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) | |
34 | 23, 33 | mpan 424 | . . 3 ⊢ (𝐿 ∈ ℤ → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) |
35 | 34 | adantl 277 | . 2 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 ∨ 0 = 𝐿 ∨ 𝐿 < 0)) |
36 | 10, 16, 32, 35 | mpjao3dan 1318 | 1 ⊢ ((𝑊:(0..^𝐿)⟶𝑆 ∧ 𝐿 ∈ ℤ) → 𝑊 ∈ Word 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2164 ∅c0 3446 class class class wbr 4029 ⟶wf 5242 (class class class)co 5910 0cc0 7862 < clt 8044 ≤ cle 8045 ℕ0cn0 9230 ℤcz 9307 ..^cfzo 10198 Word cword 10904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-iinf 4616 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-apti 7977 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4322 df-iord 4395 df-on 4397 df-ilim 4398 df-suc 4400 df-iom 4619 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-f 5250 df-f1 5251 df-fo 5252 df-f1o 5253 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-1st 6184 df-2nd 6185 df-recs 6349 df-frec 6435 df-1o 6460 df-er 6578 df-en 6786 df-fin 6788 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-inn 8973 df-n0 9231 df-z 9308 df-uz 9583 df-fz 10065 df-fzo 10199 df-word 10905 |
This theorem is referenced by: wrdred1 10946 |
Copyright terms: Public domain | W3C validator |