ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmdvdsr GIF version

Theorem rhmdvdsr 13855
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x 𝑋 = (Base‘𝑅)
rhmdvdsr.m = (∥r𝑅)
rhmdvdsr.n / = (∥r𝑆)
Assertion
Ref Expression
rhmdvdsr (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))

Proof of Theorem rhmdvdsr
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simpl2 1003 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴𝑋)
3 rhmdvdsr.x . . . . 5 𝑋 = (Base‘𝑅)
4 eqid 2204 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
53, 4rhmf 13843 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
65ffvelcdmda 5709 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (Base‘𝑆))
71, 2, 6syl2anc 411 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) ∈ (Base‘𝑆))
8 simpll1 1038 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆))
9 simpr 110 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝑐𝑋)
105ffvelcdmda 5709 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
118, 9, 10syl2anc 411 . . . . 5 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
1211ralrimiva 2578 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆))
132adantr 276 . . . . . . 7 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐴𝑋)
14 eqid 2204 . . . . . . . 8 (.r𝑅) = (.r𝑅)
15 eqid 2204 . . . . . . . 8 (.r𝑆) = (.r𝑆)
163, 14, 15rhmmul 13844 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋𝐴𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
178, 9, 13, 16syl3anc 1249 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
1817ralrimiva 2578 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
19 simpr 110 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴 𝐵)
203a1i 9 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑋 = (Base‘𝑅))
21 rhmdvdsr.m . . . . . . . 8 = (∥r𝑅)
2221a1i 9 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → = (∥r𝑅))
23 rhmrcl1 13835 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
24233ad2ant1 1020 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝑅 ∈ Ring)
2524adantr 276 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑅 ∈ Ring)
26 ringsrg 13727 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
2725, 26syl 14 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑅 ∈ SRing)
28 eqidd 2205 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (.r𝑅) = (.r𝑅))
2920, 22, 27, 28, 2dvdsr2d 13775 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐴 𝐵 ↔ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵))
3019, 29mpbid 147 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
31 r19.29 2642 . . . . . 6 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵))
32 simpl 109 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
33 simpr 110 . . . . . . . . 9 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝑐(.r𝑅)𝐴) = 𝐵)
3433fveq2d 5574 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = (𝐹𝐵))
3532, 34eqtr3d 2239 . . . . . . 7 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3635reximi 2602 . . . . . 6 (∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3731, 36syl 14 . . . . 5 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3818, 30, 37syl2anc 411 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
39 r19.29 2642 . . . 4 ((∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
4012, 38, 39syl2anc 411 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
41 oveq1 5941 . . . . . 6 (𝑦 = (𝐹𝑐) → (𝑦(.r𝑆)(𝐹𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
4241eqeq1d 2213 . . . . 5 (𝑦 = (𝐹𝑐) → ((𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵) ↔ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
4342rspcev 2876 . . . 4 (((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
4443rexlimivw 2618 . . 3 (∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
4540, 44syl 14 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
46 eqidd 2205 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (Base‘𝑆) = (Base‘𝑆))
47 rhmdvdsr.n . . . 4 / = (∥r𝑆)
4847a1i 9 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → / = (∥r𝑆))
49 rhmrcl2 13836 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
50493ad2ant1 1020 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝑆 ∈ Ring)
5150adantr 276 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑆 ∈ Ring)
52 ringsrg 13727 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
5351, 52syl 14 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑆 ∈ SRing)
54 eqidd 2205 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (.r𝑆) = (.r𝑆))
5546, 48, 53, 54dvdsrd 13774 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ((𝐹𝐴) / (𝐹𝐵) ↔ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))))
567, 45, 55mpbir2and 946 1 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wral 2483  wrex 2484   class class class wbr 4043  cfv 5268  (class class class)co 5934  Basecbs 12751  .rcmulr 12829  SRingcsrg 13643  Ringcrg 13676  rcdsr 13766   RingHom crh 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-map 6727  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-plusg 12841  df-mulr 12842  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-mhm 13209  df-grp 13253  df-minusg 13254  df-ghm 13495  df-cmn 13540  df-abl 13541  df-mgp 13601  df-ur 13640  df-srg 13644  df-ring 13678  df-dvdsr 13769  df-rhm 13832
This theorem is referenced by:  elrhmunit  13857
  Copyright terms: Public domain W3C validator