| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl1 1002 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 2 |   | simpl2 1003 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∈ 𝑋) | 
| 3 |   | rhmdvdsr.x | 
. . . . 5
⊢ 𝑋 = (Base‘𝑅) | 
| 4 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 5 | 3, 4 | rhmf 13719 | 
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆)) | 
| 6 | 5 | ffvelcdmda 5697 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ (Base‘𝑆)) | 
| 7 | 1, 2, 6 | syl2anc 411 | 
. 2
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) ∈ (Base‘𝑆)) | 
| 8 |   | simpll1 1038 | 
. . . . . 6
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 9 |   | simpr 110 | 
. . . . . 6
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → 𝑐 ∈ 𝑋) | 
| 10 | 5 | ffvelcdmda 5697 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐 ∈ 𝑋) → (𝐹‘𝑐) ∈ (Base‘𝑆)) | 
| 11 | 8, 9, 10 | syl2anc 411 | 
. . . . 5
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → (𝐹‘𝑐) ∈ (Base‘𝑆)) | 
| 12 | 11 | ralrimiva 2570 | 
. . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∀𝑐 ∈ 𝑋 (𝐹‘𝑐) ∈ (Base‘𝑆)) | 
| 13 | 2 | adantr 276 | 
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → 𝐴 ∈ 𝑋) | 
| 14 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 15 |   | eqid 2196 | 
. . . . . . . 8
⊢
(.r‘𝑆) = (.r‘𝑆) | 
| 16 | 3, 14, 15 | rhmmul 13720 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 17 | 8, 9, 13, 16 | syl3anc 1249 | 
. . . . . 6
⊢ ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) ∧ 𝑐 ∈ 𝑋) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 18 | 17 | ralrimiva 2570 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∀𝑐 ∈ 𝑋 (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 19 |   | simpr 110 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝐴 ∥ 𝐵) | 
| 20 | 3 | a1i 9 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝑋 = (Base‘𝑅)) | 
| 21 |   | rhmdvdsr.m | 
. . . . . . . 8
⊢  ∥ =
(∥r‘𝑅) | 
| 22 | 21 | a1i 9 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∥ =
(∥r‘𝑅)) | 
| 23 |   | rhmrcl1 13711 | 
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | 
| 24 | 23 | 3ad2ant1 1020 | 
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑅 ∈ Ring) | 
| 25 | 24 | adantr 276 | 
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝑅 ∈ Ring) | 
| 26 |   | ringsrg 13603 | 
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝑅 ∈ SRing) | 
| 28 |   | eqidd 2197 | 
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (.r‘𝑅) = (.r‘𝑅)) | 
| 29 | 20, 22, 27, 28, 2 | dvdsr2d 13651 | 
. . . . . 6
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐴 ∥ 𝐵 ↔ ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵)) | 
| 30 | 19, 29 | mpbid 147 | 
. . . . 5
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) | 
| 31 |   | r19.29 2634 | 
. . . . . 6
⊢
((∀𝑐 ∈
𝑋 (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵)) | 
| 32 |   | simpl 109 | 
. . . . . . . 8
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 33 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → (𝑐(.r‘𝑅)𝐴) = 𝐵) | 
| 34 | 33 | fveq2d 5562 | 
. . . . . . . 8
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r‘𝑅)𝐴)) = (𝐹‘𝐵)) | 
| 35 | 32, 34 | eqtr3d 2231 | 
. . . . . . 7
⊢ (((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 36 | 35 | reximi 2594 | 
. . . . . 6
⊢
(∃𝑐 ∈
𝑋 ((𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ (𝑐(.r‘𝑅)𝐴) = 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 37 | 31, 36 | syl 14 | 
. . . . 5
⊢
((∀𝑐 ∈
𝑋 (𝐹‘(𝑐(.r‘𝑅)𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) ∧ ∃𝑐 ∈ 𝑋 (𝑐(.r‘𝑅)𝐴) = 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 38 | 18, 30, 37 | syl2anc 411 | 
. . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 39 |   | r19.29 2634 | 
. . . 4
⊢
((∀𝑐 ∈
𝑋 (𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 40 | 12, 38, 39 | syl2anc 411 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑐 ∈ 𝑋 ((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 41 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑦 = (𝐹‘𝑐) → (𝑦(.r‘𝑆)(𝐹‘𝐴)) = ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴))) | 
| 42 | 41 | eqeq1d 2205 | 
. . . . 5
⊢ (𝑦 = (𝐹‘𝑐) → ((𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵) ↔ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵))) | 
| 43 | 42 | rspcev 2868 | 
. . . 4
⊢ (((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 44 | 43 | rexlimivw 2610 | 
. . 3
⊢
(∃𝑐 ∈
𝑋 ((𝐹‘𝑐) ∈ (Base‘𝑆) ∧ ((𝐹‘𝑐)(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 45 | 40, 44 | syl 14 | 
. 2
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)) | 
| 46 |   | eqidd 2197 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (Base‘𝑆) = (Base‘𝑆)) | 
| 47 |   | rhmdvdsr.n | 
. . . 4
⊢  / =
(∥r‘𝑆) | 
| 48 | 47 | a1i 9 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → / =
(∥r‘𝑆)) | 
| 49 |   | rhmrcl2 13712 | 
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | 
| 50 | 49 | 3ad2ant1 1020 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑆 ∈ Ring) | 
| 51 | 50 | adantr 276 | 
. . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝑆 ∈ Ring) | 
| 52 |   | ringsrg 13603 | 
. . . 4
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) | 
| 53 | 51, 52 | syl 14 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → 𝑆 ∈ SRing) | 
| 54 |   | eqidd 2197 | 
. . 3
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (.r‘𝑆) = (.r‘𝑆)) | 
| 55 | 46, 48, 53, 54 | dvdsrd 13650 | 
. 2
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → ((𝐹‘𝐴) / (𝐹‘𝐵) ↔ ((𝐹‘𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r‘𝑆)(𝐹‘𝐴)) = (𝐹‘𝐵)))) | 
| 56 | 7, 45, 55 | mpbir2and 946 | 
1
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) |