ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmdvdsr GIF version

Theorem rhmdvdsr 13807
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x 𝑋 = (Base‘𝑅)
rhmdvdsr.m = (∥r𝑅)
rhmdvdsr.n / = (∥r𝑆)
Assertion
Ref Expression
rhmdvdsr (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))

Proof of Theorem rhmdvdsr
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simpl2 1003 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴𝑋)
3 rhmdvdsr.x . . . . 5 𝑋 = (Base‘𝑅)
4 eqid 2196 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
53, 4rhmf 13795 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
65ffvelcdmda 5700 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (Base‘𝑆))
71, 2, 6syl2anc 411 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) ∈ (Base‘𝑆))
8 simpll1 1038 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆))
9 simpr 110 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝑐𝑋)
105ffvelcdmda 5700 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
118, 9, 10syl2anc 411 . . . . 5 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
1211ralrimiva 2570 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆))
132adantr 276 . . . . . . 7 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐴𝑋)
14 eqid 2196 . . . . . . . 8 (.r𝑅) = (.r𝑅)
15 eqid 2196 . . . . . . . 8 (.r𝑆) = (.r𝑆)
163, 14, 15rhmmul 13796 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋𝐴𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
178, 9, 13, 16syl3anc 1249 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
1817ralrimiva 2570 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
19 simpr 110 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴 𝐵)
203a1i 9 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑋 = (Base‘𝑅))
21 rhmdvdsr.m . . . . . . . 8 = (∥r𝑅)
2221a1i 9 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → = (∥r𝑅))
23 rhmrcl1 13787 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
24233ad2ant1 1020 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝑅 ∈ Ring)
2524adantr 276 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑅 ∈ Ring)
26 ringsrg 13679 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
2725, 26syl 14 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑅 ∈ SRing)
28 eqidd 2197 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (.r𝑅) = (.r𝑅))
2920, 22, 27, 28, 2dvdsr2d 13727 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐴 𝐵 ↔ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵))
3019, 29mpbid 147 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
31 r19.29 2634 . . . . . 6 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵))
32 simpl 109 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
33 simpr 110 . . . . . . . . 9 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝑐(.r𝑅)𝐴) = 𝐵)
3433fveq2d 5565 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = (𝐹𝐵))
3532, 34eqtr3d 2231 . . . . . . 7 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3635reximi 2594 . . . . . 6 (∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3731, 36syl 14 . . . . 5 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3818, 30, 37syl2anc 411 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
39 r19.29 2634 . . . 4 ((∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
4012, 38, 39syl2anc 411 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
41 oveq1 5932 . . . . . 6 (𝑦 = (𝐹𝑐) → (𝑦(.r𝑆)(𝐹𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
4241eqeq1d 2205 . . . . 5 (𝑦 = (𝐹𝑐) → ((𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵) ↔ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
4342rspcev 2868 . . . 4 (((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
4443rexlimivw 2610 . . 3 (∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
4540, 44syl 14 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
46 eqidd 2197 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (Base‘𝑆) = (Base‘𝑆))
47 rhmdvdsr.n . . . 4 / = (∥r𝑆)
4847a1i 9 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → / = (∥r𝑆))
49 rhmrcl2 13788 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
50493ad2ant1 1020 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝑆 ∈ Ring)
5150adantr 276 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑆 ∈ Ring)
52 ringsrg 13679 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
5351, 52syl 14 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑆 ∈ SRing)
54 eqidd 2197 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (.r𝑆) = (.r𝑆))
5546, 48, 53, 54dvdsrd 13726 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ((𝐹𝐴) / (𝐹𝐵) ↔ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))))
567, 45, 55mpbir2and 946 1 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  Basecbs 12703  .rcmulr 12781  SRingcsrg 13595  Ringcrg 13628  rcdsr 13718   RingHom crh 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-dvdsr 13721  df-rhm 13784
This theorem is referenced by:  elrhmunit  13809
  Copyright terms: Public domain W3C validator