ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmdvdsr GIF version

Theorem rhmdvdsr 13879
Description: A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Hypotheses
Ref Expression
rhmdvdsr.x 𝑋 = (Base‘𝑅)
rhmdvdsr.m = (∥r𝑅)
rhmdvdsr.n / = (∥r𝑆)
Assertion
Ref Expression
rhmdvdsr (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))

Proof of Theorem rhmdvdsr
Dummy variables 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 simpl2 1003 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴𝑋)
3 rhmdvdsr.x . . . . 5 𝑋 = (Base‘𝑅)
4 eqid 2204 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
53, 4rhmf 13867 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝑋⟶(Base‘𝑆))
65ffvelcdmda 5714 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ (Base‘𝑆))
71, 2, 6syl2anc 411 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) ∈ (Base‘𝑆))
8 simpll1 1038 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐹 ∈ (𝑅 RingHom 𝑆))
9 simpr 110 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝑐𝑋)
105ffvelcdmda 5714 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
118, 9, 10syl2anc 411 . . . . 5 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹𝑐) ∈ (Base‘𝑆))
1211ralrimiva 2578 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆))
132adantr 276 . . . . . . 7 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → 𝐴𝑋)
14 eqid 2204 . . . . . . . 8 (.r𝑅) = (.r𝑅)
15 eqid 2204 . . . . . . . 8 (.r𝑆) = (.r𝑆)
163, 14, 15rhmmul 13868 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑐𝑋𝐴𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
178, 9, 13, 16syl3anc 1249 . . . . . 6 ((((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) ∧ 𝑐𝑋) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
1817ralrimiva 2578 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
19 simpr 110 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝐴 𝐵)
203a1i 9 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑋 = (Base‘𝑅))
21 rhmdvdsr.m . . . . . . . 8 = (∥r𝑅)
2221a1i 9 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → = (∥r𝑅))
23 rhmrcl1 13859 . . . . . . . . . 10 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
24233ad2ant1 1020 . . . . . . . . 9 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝑅 ∈ Ring)
2524adantr 276 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑅 ∈ Ring)
26 ringsrg 13751 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
2725, 26syl 14 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑅 ∈ SRing)
28 eqidd 2205 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (.r𝑅) = (.r𝑅))
2920, 22, 27, 28, 2dvdsr2d 13799 . . . . . 6 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐴 𝐵 ↔ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵))
3019, 29mpbid 147 . . . . 5 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵)
31 r19.29 2642 . . . . . 6 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵))
32 simpl 109 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
33 simpr 110 . . . . . . . . 9 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝑐(.r𝑅)𝐴) = 𝐵)
3433fveq2d 5579 . . . . . . . 8 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → (𝐹‘(𝑐(.r𝑅)𝐴)) = (𝐹𝐵))
3532, 34eqtr3d 2239 . . . . . . 7 (((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3635reximi 2602 . . . . . 6 (∃𝑐𝑋 ((𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3731, 36syl 14 . . . . 5 ((∀𝑐𝑋 (𝐹‘(𝑐(.r𝑅)𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) ∧ ∃𝑐𝑋 (𝑐(.r𝑅)𝐴) = 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
3818, 30, 37syl2anc 411 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
39 r19.29 2642 . . . 4 ((∀𝑐𝑋 (𝐹𝑐) ∈ (Base‘𝑆) ∧ ∃𝑐𝑋 ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
4012, 38, 39syl2anc 411 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
41 oveq1 5950 . . . . . 6 (𝑦 = (𝐹𝑐) → (𝑦(.r𝑆)(𝐹𝐴)) = ((𝐹𝑐)(.r𝑆)(𝐹𝐴)))
4241eqeq1d 2213 . . . . 5 (𝑦 = (𝐹𝑐) → ((𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵) ↔ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)))
4342rspcev 2876 . . . 4 (((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
4443rexlimivw 2618 . . 3 (∃𝑐𝑋 ((𝐹𝑐) ∈ (Base‘𝑆) ∧ ((𝐹𝑐)(.r𝑆)(𝐹𝐴)) = (𝐹𝐵)) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
4540, 44syl 14 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))
46 eqidd 2205 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (Base‘𝑆) = (Base‘𝑆))
47 rhmdvdsr.n . . . 4 / = (∥r𝑆)
4847a1i 9 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → / = (∥r𝑆))
49 rhmrcl2 13860 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
50493ad2ant1 1020 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝑆 ∈ Ring)
5150adantr 276 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑆 ∈ Ring)
52 ringsrg 13751 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
5351, 52syl 14 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → 𝑆 ∈ SRing)
54 eqidd 2205 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (.r𝑆) = (.r𝑆))
5546, 48, 53, 54dvdsrd 13798 . 2 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → ((𝐹𝐴) / (𝐹𝐵) ↔ ((𝐹𝐴) ∈ (Base‘𝑆) ∧ ∃𝑦 ∈ (Base‘𝑆)(𝑦(.r𝑆)(𝐹𝐴)) = (𝐹𝐵))))
567, 45, 55mpbir2and 946 1 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wral 2483  wrex 2484   class class class wbr 4043  cfv 5270  (class class class)co 5943  Basecbs 12774  .rcmulr 12852  SRingcsrg 13667  Ringcrg 13700  rcdsr 13790   RingHom crh 13854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mhm 13233  df-grp 13277  df-minusg 13278  df-ghm 13519  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-dvdsr 13793  df-rhm 13856
This theorem is referenced by:  elrhmunit  13881
  Copyright terms: Public domain W3C validator