| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sumeq1 11539 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Σcsu 11537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10559 df-sumdc 11538 |
| This theorem is referenced by: sumeq12dv 11556 sumeq12rdv 11557 fsumf1o 11574 fisumss 11576 fsumcllem 11583 fsum1 11596 fzosump1 11601 fsump1 11604 fsum2d 11619 fisumcom2 11622 fsumshftm 11629 fisumrev2 11630 telfsumo 11650 telfsum 11652 telfsum2 11653 fsumparts 11654 fsumiun 11661 bcxmas 11673 isumsplit 11675 isum1p 11676 arisum 11682 arisum2 11683 geoserap 11691 geolim 11695 geo2sum2 11699 cvgratnnlemseq 11710 cvgratnnlemsumlt 11712 mertenslemub 11718 mertenslemi1 11719 mertenslem2 11720 mertensabs 11721 efcvgfsum 11851 eftlub 11874 effsumlt 11876 eirraplem 11961 bitsinv1 12146 pcfac 12546 gsumfzfsumlem0 14220 gsumfzfsumlemm 14221 elplyr 15084 plycolemc 15102 dvply2g 15110 cvgcmp2nlemabs 15789 trilpolemeq1 15797 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |