| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sumeq1 11608 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 Σcsu 11606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-if 3571 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-seqfrec 10591 df-sumdc 11607 |
| This theorem is referenced by: sumeq12dv 11625 sumeq12rdv 11626 fsumf1o 11643 fisumss 11645 fsumcllem 11652 fsum1 11665 fzosump1 11670 fsump1 11673 fsum2d 11688 fisumcom2 11691 fsumshftm 11698 fisumrev2 11699 telfsumo 11719 telfsum 11721 telfsum2 11722 fsumparts 11723 fsumiun 11730 bcxmas 11742 isumsplit 11744 isum1p 11745 arisum 11751 arisum2 11752 geoserap 11760 geolim 11764 geo2sum2 11768 cvgratnnlemseq 11779 cvgratnnlemsumlt 11781 mertenslemub 11787 mertenslemi1 11788 mertenslem2 11789 mertensabs 11790 efcvgfsum 11920 eftlub 11943 effsumlt 11945 eirraplem 12030 bitsinv1 12215 pcfac 12615 gsumfzfsumlem0 14290 gsumfzfsumlemm 14291 elplyr 15154 plycolemc 15172 dvply2g 15180 cvgcmp2nlemabs 15904 trilpolemeq1 15912 nconstwlpolemgt0 15936 |
| Copyright terms: Public domain | W3C validator |