| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) | 
| Ref | Expression | 
|---|---|
| sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sumeq1 11520 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 Σcsu 11518 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 df-sumdc 11519 | 
| This theorem is referenced by: sumeq12dv 11537 sumeq12rdv 11538 fsumf1o 11555 fisumss 11557 fsumcllem 11564 fsum1 11577 fzosump1 11582 fsump1 11585 fsum2d 11600 fisumcom2 11603 fsumshftm 11610 fisumrev2 11611 telfsumo 11631 telfsum 11633 telfsum2 11634 fsumparts 11635 fsumiun 11642 bcxmas 11654 isumsplit 11656 isum1p 11657 arisum 11663 arisum2 11664 geoserap 11672 geolim 11676 geo2sum2 11680 cvgratnnlemseq 11691 cvgratnnlemsumlt 11693 mertenslemub 11699 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 efcvgfsum 11832 eftlub 11855 effsumlt 11857 eirraplem 11942 pcfac 12519 gsumfzfsumlem0 14142 gsumfzfsumlemm 14143 elplyr 14976 plycolemc 14994 dvply2g 15002 cvgcmp2nlemabs 15676 trilpolemeq1 15684 nconstwlpolemgt0 15708 | 
| Copyright terms: Public domain | W3C validator |