| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sumeq1 11861 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Σcsu 11859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-seqfrec 10665 df-sumdc 11860 |
| This theorem is referenced by: sumeq12dv 11878 sumeq12rdv 11879 fsumf1o 11896 fisumss 11898 fsumcllem 11905 fsum1 11918 fzosump1 11923 fsump1 11926 fsum2d 11941 fisumcom2 11944 fsumshftm 11951 fisumrev2 11952 telfsumo 11972 telfsum 11974 telfsum2 11975 fsumparts 11976 fsumiun 11983 bcxmas 11995 isumsplit 11997 isum1p 11998 arisum 12004 arisum2 12005 geoserap 12013 geolim 12017 geo2sum2 12021 cvgratnnlemseq 12032 cvgratnnlemsumlt 12034 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 mertensabs 12043 efcvgfsum 12173 eftlub 12196 effsumlt 12198 eirraplem 12283 bitsinv1 12468 pcfac 12868 gsumfzfsumlem0 14544 gsumfzfsumlemm 14545 elplyr 15408 plycolemc 15426 dvply2g 15434 cvgcmp2nlemabs 16359 trilpolemeq1 16367 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |