ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumeq1d GIF version

Theorem sumeq1d 11376
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
Hypothesis
Ref Expression
sumeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
sumeq1d (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)

Proof of Theorem sumeq1d
StepHypRef Expression
1 sumeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 sumeq1 11365 . 2 (𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
31, 2syl 14 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  Σcsu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-seqfrec 10448  df-sumdc 11364
This theorem is referenced by:  sumeq12dv  11382  sumeq12rdv  11383  fsumf1o  11400  fisumss  11402  fsumcllem  11409  fsum1  11422  fzosump1  11427  fsump1  11430  fsum2d  11445  fisumcom2  11448  fsumshftm  11455  fisumrev2  11456  telfsumo  11476  telfsum  11478  telfsum2  11479  fsumparts  11480  fsumiun  11487  bcxmas  11499  isumsplit  11501  isum1p  11502  arisum  11508  arisum2  11509  geoserap  11517  geolim  11521  geo2sum2  11525  cvgratnnlemseq  11536  cvgratnnlemsumlt  11538  mertenslemub  11544  mertenslemi1  11545  mertenslem2  11546  mertensabs  11547  efcvgfsum  11677  eftlub  11700  effsumlt  11702  eirraplem  11786  pcfac  12350  cvgcmp2nlemabs  14819  trilpolemeq1  14827  nconstwlpolemgt0  14851
  Copyright terms: Public domain W3C validator