Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version |
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
Ref | Expression |
---|---|
sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sumeq1 11318 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-seqfrec 10402 df-sumdc 11317 |
This theorem is referenced by: sumeq12dv 11335 sumeq12rdv 11336 fsumf1o 11353 fisumss 11355 fsumcllem 11362 fsum1 11375 fzosump1 11380 fsump1 11383 fsum2d 11398 fisumcom2 11401 fsumshftm 11408 fisumrev2 11409 telfsumo 11429 telfsum 11431 telfsum2 11432 fsumparts 11433 fsumiun 11440 bcxmas 11452 isumsplit 11454 isum1p 11455 arisum 11461 arisum2 11462 geoserap 11470 geolim 11474 geo2sum2 11478 cvgratnnlemseq 11489 cvgratnnlemsumlt 11491 mertenslemub 11497 mertenslemi1 11498 mertenslem2 11499 mertensabs 11500 efcvgfsum 11630 eftlub 11653 effsumlt 11655 eirraplem 11739 pcfac 12302 cvgcmp2nlemabs 14064 trilpolemeq1 14072 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |