![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version |
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
Ref | Expression |
---|---|
sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sumeq1 11390 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Σcsu 11388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-if 3550 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-cnv 4649 df-dm 4651 df-rn 4652 df-res 4653 df-iota 5193 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-ov 5895 df-oprab 5896 df-mpo 5897 df-recs 6325 df-frec 6411 df-seqfrec 10472 df-sumdc 11389 |
This theorem is referenced by: sumeq12dv 11407 sumeq12rdv 11408 fsumf1o 11425 fisumss 11427 fsumcllem 11434 fsum1 11447 fzosump1 11452 fsump1 11455 fsum2d 11470 fisumcom2 11473 fsumshftm 11480 fisumrev2 11481 telfsumo 11501 telfsum 11503 telfsum2 11504 fsumparts 11505 fsumiun 11512 bcxmas 11524 isumsplit 11526 isum1p 11527 arisum 11533 arisum2 11534 geoserap 11542 geolim 11546 geo2sum2 11550 cvgratnnlemseq 11561 cvgratnnlemsumlt 11563 mertenslemub 11569 mertenslemi1 11570 mertenslem2 11571 mertensabs 11572 efcvgfsum 11702 eftlub 11725 effsumlt 11727 eirraplem 11811 pcfac 12377 cvgcmp2nlemabs 15218 trilpolemeq1 15226 nconstwlpolemgt0 15250 |
Copyright terms: Public domain | W3C validator |