Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version |
Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
Ref | Expression |
---|---|
sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | sumeq1 11329 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Σcsu 11327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-recs 6296 df-frec 6382 df-seqfrec 10414 df-sumdc 11328 |
This theorem is referenced by: sumeq12dv 11346 sumeq12rdv 11347 fsumf1o 11364 fisumss 11366 fsumcllem 11373 fsum1 11386 fzosump1 11391 fsump1 11394 fsum2d 11409 fisumcom2 11412 fsumshftm 11419 fisumrev2 11420 telfsumo 11440 telfsum 11442 telfsum2 11443 fsumparts 11444 fsumiun 11451 bcxmas 11463 isumsplit 11465 isum1p 11466 arisum 11472 arisum2 11473 geoserap 11481 geolim 11485 geo2sum2 11489 cvgratnnlemseq 11500 cvgratnnlemsumlt 11502 mertenslemub 11508 mertenslemi1 11509 mertenslem2 11510 mertensabs 11511 efcvgfsum 11641 eftlub 11664 effsumlt 11666 eirraplem 11750 pcfac 12313 cvgcmp2nlemabs 14321 trilpolemeq1 14329 nconstwlpolemgt0 14352 |
Copyright terms: Public domain | W3C validator |