| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumeq1d | GIF version | ||
| Description: Equality deduction for sum. (Contributed by NM, 1-Nov-2005.) |
| Ref | Expression |
|---|---|
| sumeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumeq1d | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | sumeq1 11537 | . 2 ⊢ (𝐴 = 𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Σcsu 11535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-seqfrec 10557 df-sumdc 11536 |
| This theorem is referenced by: sumeq12dv 11554 sumeq12rdv 11555 fsumf1o 11572 fisumss 11574 fsumcllem 11581 fsum1 11594 fzosump1 11599 fsump1 11602 fsum2d 11617 fisumcom2 11620 fsumshftm 11627 fisumrev2 11628 telfsumo 11648 telfsum 11650 telfsum2 11651 fsumparts 11652 fsumiun 11659 bcxmas 11671 isumsplit 11673 isum1p 11674 arisum 11680 arisum2 11681 geoserap 11689 geolim 11693 geo2sum2 11697 cvgratnnlemseq 11708 cvgratnnlemsumlt 11710 mertenslemub 11716 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 efcvgfsum 11849 eftlub 11872 effsumlt 11874 eirraplem 11959 bitsinv1 12144 pcfac 12544 gsumfzfsumlem0 14218 gsumfzfsumlemm 14219 elplyr 15060 plycolemc 15078 dvply2g 15086 cvgcmp2nlemabs 15763 trilpolemeq1 15771 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |