| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pfxval | Unicode version | ||
| Description: Value of a prefix operation. (Contributed by AV, 2-May-2020.) |
| Ref | Expression |
|---|---|
| pfxval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx 11129 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | simpl 109 |
. . . 4
| |
| 4 | opeq2 3820 |
. . . . 5
| |
| 5 | 4 | adantl 277 |
. . . 4
|
| 6 | 3, 5 | oveq12d 5964 |
. . 3
|
| 7 | 6 | adantl 277 |
. 2
|
| 8 | elex 2783 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | simpr 110 |
. 2
| |
| 11 | simpl 109 |
. . . 4
| |
| 12 | 0zd 9386 |
. . . 4
| |
| 13 | 10 | nn0zd 9495 |
. . . 4
|
| 14 | swrdval 11104 |
. . . 4
| |
| 15 | 11, 12, 13, 14 | syl3anc 1250 |
. . 3
|
| 16 | 0z 9385 |
. . . . . 6
| |
| 17 | 13, 12 | zsubcld 9502 |
. . . . . 6
|
| 18 | fzofig 10579 |
. . . . . 6
| |
| 19 | 16, 17, 18 | sylancr 414 |
. . . . 5
|
| 20 | 19 | mptexd 5813 |
. . . 4
|
| 21 | 0ex 4172 |
. . . . 5
| |
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | 20, 22 | ifexd 4532 |
. . 3
|
| 24 | 15, 23 | eqeltrd 2282 |
. 2
|
| 25 | 2, 7, 9, 10, 24 | ovmpod 6075 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-1o 6504 df-er 6622 df-en 6830 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-fzo 10267 df-substr 11102 df-pfx 11129 |
| This theorem is referenced by: pfx00g 11131 pfx0g 11132 pfxclg 11133 pfxmpt 11134 pfxfv 11138 pfxnd 11143 pfxwrdsymbg 11144 pfx1 11157 |
| Copyright terms: Public domain | W3C validator |