ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdsbslen Unicode version

Theorem swrdsbslen 11152
Description: Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020.)
Assertion
Ref Expression
swrdsbslen  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )

Proof of Theorem swrdsbslen
StepHypRef Expression
1 simpr1 1006 . . . . 5  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( W  e. Word  V  /\  U  e. Word  V
) )
2 simpr2 1007 . . . . 5  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( M  e. 
NN0  /\  N  e.  NN0 ) )
3 simpl 109 . . . . 5  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  N  <_  M
)
4 swrdsb0eq 11151 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  M )  ->  ( W substr  <. M ,  N >. )  =  ( U substr  <. M ,  N >. ) )
51, 2, 3, 4syl3anc 1250 . . . 4  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( W substr  <. M ,  N >. )  =  ( U substr  <. M ,  N >. ) )
65fveq2d 5598 . . 3  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
76ancoms 268 . 2  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  N  <_  M )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
8 nn0z 9422 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  ZZ )
9 nn0z 9422 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
10 zltnle 9448 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  -.  N  <_  M )
)
118, 9, 10syl2an 289 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  <->  -.  N  <_  M )
)
12 nn0re 9334 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  RR )
13 nn0re 9334 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  RR )
14 ltle 8190 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <  N  ->  M  <_  N )
)
1512, 13, 14syl2an 289 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  M  <_  N )
)
1611, 15sylbird 170 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  <_  M  ->  M  <_  N
) )
17163ad2ant2 1022 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( -.  N  <_  M  ->  M  <_  N
) )
18 simpl1l 1051 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  W  e. Word  V )
19 simpl2l 1053 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  M  e.  NN0 )
208, 9anim12i 338 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
21203ad2ant2 1022 . . . . . . . . . 10  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
2221anim1i 340 . . . . . . . . 9  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N ) )
23 df-3an 983 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N ) )
2422, 23sylibr 134 . . . . . . . 8  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
25 eluz2 9684 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
2624, 25sylibr 134 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  N  e.  ( ZZ>= `  M ) )
27 simpl3l 1055 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  N  <_  ( `  W )
)
28 swrdlen2 11148 . . . . . . 7  |-  ( ( W  e. Word  V  /\  ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  N  <_  ( `  W )
)  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( N  -  M ) )
2918, 19, 26, 27, 28syl121anc 1255 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( N  -  M
) )
30 simpl1r 1052 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  U  e. Word  V )
31 simpl3r 1056 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  N  <_  ( `  U )
)
32 swrdlen2 11148 . . . . . . 7  |-  ( ( U  e. Word  V  /\  ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  N  <_  ( `  U )
)  ->  ( `  ( U substr  <. M ,  N >. ) )  =  ( N  -  M ) )
3330, 19, 26, 31, 32syl121anc 1255 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( `  ( U substr  <. M ,  N >. ) )  =  ( N  -  M
) )
3429, 33eqtr4d 2242 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
3534ex 115 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( M  <_  N  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) ) )
3617, 35syld 45 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( -.  N  <_  M  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) ) )
3736imp 124 . 2  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  -.  N  <_  M )  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
3821simprd 114 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  ->  N  e.  ZZ )
3921simpld 112 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  ->  M  e.  ZZ )
40 zdcle 9479 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <_  M )
4138, 39, 40syl2anc 411 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> DECID  N  <_  M )
42 exmiddc 838 . . 3  |-  (DECID  N  <_  M  ->  ( N  <_  M  \/  -.  N  <_  M ) )
4341, 42syl 14 . 2  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( N  <_  M  \/  -.  N  <_  M
) )
447, 37, 43mpjaodan 800 1  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177   <.cop 3641   class class class wbr 4054   ` cfv 5285  (class class class)co 5962   RRcr 7954    < clt 8137    <_ cle 8138    - cmin 8273   NN0cn0 9325   ZZcz 9402   ZZ>=cuz 9678  ♯chash 10952  Word cword 11026   substr csubstr 11131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-1o 6520  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-ihash 10953  df-word 11027  df-substr 11132
This theorem is referenced by:  swrdspsleq  11153
  Copyright terms: Public domain W3C validator