ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdsbslen Unicode version

Theorem swrdsbslen 11119
Description: Two subwords with the same bounds have the same length. (Contributed by AV, 4-May-2020.)
Assertion
Ref Expression
swrdsbslen  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )

Proof of Theorem swrdsbslen
StepHypRef Expression
1 simpr1 1006 . . . . 5  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( W  e. Word  V  /\  U  e. Word  V
) )
2 simpr2 1007 . . . . 5  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( M  e. 
NN0  /\  N  e.  NN0 ) )
3 simpl 109 . . . . 5  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  N  <_  M
)
4 swrdsb0eq 11118 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  M )  ->  ( W substr  <. M ,  N >. )  =  ( U substr  <. M ,  N >. ) )
51, 2, 3, 4syl3anc 1250 . . . 4  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( W substr  <. M ,  N >. )  =  ( U substr  <. M ,  N >. ) )
65fveq2d 5580 . . 3  |-  ( ( N  <_  M  /\  ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) ) )  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
76ancoms 268 . 2  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  N  <_  M )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
8 nn0z 9392 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  ZZ )
9 nn0z 9392 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
10 zltnle 9418 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  -.  N  <_  M )
)
118, 9, 10syl2an 289 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  <->  -.  N  <_  M )
)
12 nn0re 9304 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  RR )
13 nn0re 9304 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  RR )
14 ltle 8160 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <  N  ->  M  <_  N )
)
1512, 13, 14syl2an 289 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  ->  M  <_  N )
)
1611, 15sylbird 170 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  <_  M  ->  M  <_  N
) )
17163ad2ant2 1022 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( -.  N  <_  M  ->  M  <_  N
) )
18 simpl1l 1051 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  W  e. Word  V )
19 simpl2l 1053 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  M  e.  NN0 )
208, 9anim12i 338 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
21203ad2ant2 1022 . . . . . . . . . 10  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
2221anim1i 340 . . . . . . . . 9  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N ) )
23 df-3an 983 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  M  <_  N ) )
2422, 23sylibr 134 . . . . . . . 8  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
25 eluz2 9654 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N ) )
2624, 25sylibr 134 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  N  e.  ( ZZ>= `  M ) )
27 simpl3l 1055 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  N  <_  ( `  W )
)
28 swrdlen2 11115 . . . . . . 7  |-  ( ( W  e. Word  V  /\  ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  N  <_  ( `  W )
)  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( N  -  M ) )
2918, 19, 26, 27, 28syl121anc 1255 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( N  -  M
) )
30 simpl1r 1052 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  U  e. Word  V )
31 simpl3r 1056 . . . . . . 7  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  ->  N  <_  ( `  U )
)
32 swrdlen2 11115 . . . . . . 7  |-  ( ( U  e. Word  V  /\  ( M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  N  <_  ( `  U )
)  ->  ( `  ( U substr  <. M ,  N >. ) )  =  ( N  -  M ) )
3330, 19, 26, 31, 32syl121anc 1255 . . . . . 6  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( `  ( U substr  <. M ,  N >. ) )  =  ( N  -  M
) )
3429, 33eqtr4d 2241 . . . . 5  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  M  <_  N )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
3534ex 115 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( M  <_  N  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) ) )
3617, 35syld 45 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( -.  N  <_  M  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) ) )
3736imp 124 . 2  |-  ( ( ( ( W  e. Word  V  /\  U  e. Word  V
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  /\  -.  N  <_  M )  ->  ( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
3821simprd 114 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  ->  N  e.  ZZ )
3921simpld 112 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  ->  M  e.  ZZ )
40 zdcle 9449 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  -> DECID  N  <_  M )
4138, 39, 40syl2anc 411 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> DECID  N  <_  M )
42 exmiddc 838 . . 3  |-  (DECID  N  <_  M  ->  ( N  <_  M  \/  -.  N  <_  M ) )
4341, 42syl 14 . 2  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( N  <_  M  \/  -.  N  <_  M
) )
447, 37, 43mpjaodan 800 1  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( `  W )  /\  N  <_  ( `  U
) ) )  -> 
( `  ( W substr  <. M ,  N >. ) )  =  ( `  ( U substr  <. M ,  N >. ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924    < clt 8107    <_ cle 8108    - cmin 8243   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648  ♯chash 10920  Word cword 10994   substr csubstr 11098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-ihash 10921  df-word 10995  df-substr 11099
This theorem is referenced by:  swrdspsleq  11120
  Copyright terms: Public domain W3C validator