ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm GIF version

Theorem cauappcvgprlemm 7301
Description: Lemma for cauappcvgpr 7318. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 fveq2 5340 . . . . . . 7 (𝑝 = 1Q → (𝐹𝑝) = (𝐹‘1Q))
21breq2d 3879 . . . . . 6 (𝑝 = 1Q → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹‘1Q)))
3 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 1nq 7022 . . . . . . 7 1QQ
54a1i 9 . . . . . 6 (𝜑 → 1QQ)
62, 3, 5rspcdva 2741 . . . . 5 (𝜑𝐴 <Q (𝐹‘1Q))
7 ltrelnq 7021 . . . . . . 7 <Q ⊆ (Q × Q)
87brel 4519 . . . . . 6 (𝐴 <Q (𝐹‘1Q) → (𝐴Q ∧ (𝐹‘1Q) ∈ Q))
98simpld 111 . . . . 5 (𝐴 <Q (𝐹‘1Q) → 𝐴Q)
106, 9syl 14 . . . 4 (𝜑𝐴Q)
11 halfnqq 7066 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
1210, 11syl 14 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
13 simplr 498 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
143ad2antrr 473 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
15 fveq2 5340 . . . . . . . . . . . 12 (𝑝 = 𝑠 → (𝐹𝑝) = (𝐹𝑠))
1615breq2d 3879 . . . . . . . . . . 11 (𝑝 = 𝑠 → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹𝑠)))
1716rspcv 2732 . . . . . . . . . 10 (𝑠Q → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1817ad2antlr 474 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1914, 18mpd 13 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝐴 <Q (𝐹𝑠))
20 breq1 3870 . . . . . . . . 9 ((𝑠 +Q 𝑠) = 𝐴 → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2120adantl 272 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2219, 21mpbird 166 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (𝑠 +Q 𝑠) <Q (𝐹𝑠))
23 oveq2 5698 . . . . . . . . 9 (𝑞 = 𝑠 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑠))
24 fveq2 5340 . . . . . . . . 9 (𝑞 = 𝑠 → (𝐹𝑞) = (𝐹𝑠))
2523, 24breq12d 3880 . . . . . . . 8 (𝑞 = 𝑠 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑠) <Q (𝐹𝑠)))
2625rspcev 2736 . . . . . . 7 ((𝑠Q ∧ (𝑠 +Q 𝑠) <Q (𝐹𝑠)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
2713, 22, 26syl2anc 404 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
28 oveq1 5697 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
2928breq1d 3877 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3029rexbidv 2392 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
31 cauappcvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
3231fveq2i 5343 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
33 nqex 7019 . . . . . . . . . 10 Q ∈ V
3433rabex 4004 . . . . . . . . 9 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
3533rabex 4004 . . . . . . . . 9 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
3634, 35op1st 5955 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3732, 36eqtri 2115 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3830, 37elrab2 2788 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3913, 27, 38sylanbrc 409 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4039ex 114 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4140reximdva 2487 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
4212, 41mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
43 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
4443, 5ffvelrnd 5474 . . . . 5 (𝜑 → (𝐹‘1Q) ∈ Q)
45 addclnq 7031 . . . . 5 (((𝐹‘1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) ∈ Q)
4644, 5, 45syl2anc 404 . . . 4 (𝜑 → ((𝐹‘1Q) +Q 1Q) ∈ Q)
47 addclnq 7031 . . . 4 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
4846, 5, 47syl2anc 404 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
49 ltaddnq 7063 . . . . . 6 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
5046, 5, 49syl2anc 404 . . . . 5 (𝜑 → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
51 fveq2 5340 . . . . . . . 8 (𝑞 = 1Q → (𝐹𝑞) = (𝐹‘1Q))
52 id 19 . . . . . . . 8 (𝑞 = 1Q𝑞 = 1Q)
5351, 52oveq12d 5708 . . . . . . 7 (𝑞 = 1Q → ((𝐹𝑞) +Q 𝑞) = ((𝐹‘1Q) +Q 1Q))
5453breq1d 3877 . . . . . 6 (𝑞 = 1Q → (((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5554rspcev 2736 . . . . 5 ((1QQ ∧ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
565, 50, 55syl2anc 404 . . . 4 (𝜑 → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
57 breq2 3871 . . . . . 6 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5857rexbidv 2392 . . . . 5 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5931fveq2i 5343 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
6034, 35op2nd 5956 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6159, 60eqtri 2115 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6258, 61elrab2 2788 . . . 4 ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
6348, 56, 62sylanbrc 409 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
64 eleq1 2157 . . . 4 (𝑟 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
6564rspcev 2736 . . 3 (((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6648, 63, 65syl2anc 404 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6742, 66jca 301 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wcel 1445  wral 2370  wrex 2371  {crab 2374  cop 3469   class class class wbr 3867  wf 5045  cfv 5049  (class class class)co 5690  1st c1st 5947  2nd c2nd 5948  Qcnq 6936  1Qc1q 6937   +Q cplq 6938   <Q cltq 6941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-1o 6219  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-pli 6961  df-mi 6962  df-lti 6963  df-plpq 7000  df-mpq 7001  df-enq 7003  df-nqqs 7004  df-plqqs 7005  df-mqqs 7006  df-1nqqs 7007  df-rq 7008  df-ltnqqs 7009
This theorem is referenced by:  cauappcvgprlemcl  7309
  Copyright terms: Public domain W3C validator