ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm GIF version

Theorem cauappcvgprlemm 7765
Description: Lemma for cauappcvgpr 7782. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 fveq2 5583 . . . . . . 7 (𝑝 = 1Q → (𝐹𝑝) = (𝐹‘1Q))
21breq2d 4059 . . . . . 6 (𝑝 = 1Q → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹‘1Q)))
3 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 1nq 7486 . . . . . . 7 1QQ
54a1i 9 . . . . . 6 (𝜑 → 1QQ)
62, 3, 5rspcdva 2883 . . . . 5 (𝜑𝐴 <Q (𝐹‘1Q))
7 ltrelnq 7485 . . . . . . 7 <Q ⊆ (Q × Q)
87brel 4731 . . . . . 6 (𝐴 <Q (𝐹‘1Q) → (𝐴Q ∧ (𝐹‘1Q) ∈ Q))
98simpld 112 . . . . 5 (𝐴 <Q (𝐹‘1Q) → 𝐴Q)
106, 9syl 14 . . . 4 (𝜑𝐴Q)
11 halfnqq 7530 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
1210, 11syl 14 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
13 simplr 528 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
143ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
15 fveq2 5583 . . . . . . . . . . . 12 (𝑝 = 𝑠 → (𝐹𝑝) = (𝐹𝑠))
1615breq2d 4059 . . . . . . . . . . 11 (𝑝 = 𝑠 → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹𝑠)))
1716rspcv 2874 . . . . . . . . . 10 (𝑠Q → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1817ad2antlr 489 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1914, 18mpd 13 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝐴 <Q (𝐹𝑠))
20 breq1 4050 . . . . . . . . 9 ((𝑠 +Q 𝑠) = 𝐴 → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2120adantl 277 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2219, 21mpbird 167 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (𝑠 +Q 𝑠) <Q (𝐹𝑠))
23 oveq2 5959 . . . . . . . . 9 (𝑞 = 𝑠 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑠))
24 fveq2 5583 . . . . . . . . 9 (𝑞 = 𝑠 → (𝐹𝑞) = (𝐹𝑠))
2523, 24breq12d 4060 . . . . . . . 8 (𝑞 = 𝑠 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑠) <Q (𝐹𝑠)))
2625rspcev 2878 . . . . . . 7 ((𝑠Q ∧ (𝑠 +Q 𝑠) <Q (𝐹𝑠)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
2713, 22, 26syl2anc 411 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
28 oveq1 5958 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
2928breq1d 4057 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3029rexbidv 2508 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
31 cauappcvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
3231fveq2i 5586 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
33 nqex 7483 . . . . . . . . . 10 Q ∈ V
3433rabex 4192 . . . . . . . . 9 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
3533rabex 4192 . . . . . . . . 9 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
3634, 35op1st 6239 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3732, 36eqtri 2227 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3830, 37elrab2 2933 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3913, 27, 38sylanbrc 417 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4039ex 115 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4140reximdva 2609 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
4212, 41mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
43 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
4443, 5ffvelcdmd 5723 . . . . 5 (𝜑 → (𝐹‘1Q) ∈ Q)
45 addclnq 7495 . . . . 5 (((𝐹‘1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) ∈ Q)
4644, 5, 45syl2anc 411 . . . 4 (𝜑 → ((𝐹‘1Q) +Q 1Q) ∈ Q)
47 addclnq 7495 . . . 4 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
4846, 5, 47syl2anc 411 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
49 ltaddnq 7527 . . . . . 6 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
5046, 5, 49syl2anc 411 . . . . 5 (𝜑 → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
51 fveq2 5583 . . . . . . . 8 (𝑞 = 1Q → (𝐹𝑞) = (𝐹‘1Q))
52 id 19 . . . . . . . 8 (𝑞 = 1Q𝑞 = 1Q)
5351, 52oveq12d 5969 . . . . . . 7 (𝑞 = 1Q → ((𝐹𝑞) +Q 𝑞) = ((𝐹‘1Q) +Q 1Q))
5453breq1d 4057 . . . . . 6 (𝑞 = 1Q → (((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5554rspcev 2878 . . . . 5 ((1QQ ∧ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
565, 50, 55syl2anc 411 . . . 4 (𝜑 → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
57 breq2 4051 . . . . . 6 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5857rexbidv 2508 . . . . 5 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5931fveq2i 5586 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
6034, 35op2nd 6240 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6159, 60eqtri 2227 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6258, 61elrab2 2933 . . . 4 ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
6348, 56, 62sylanbrc 417 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
64 eleq1 2269 . . . 4 (𝑟 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
6564rspcev 2878 . . 3 (((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6648, 63, 65syl2anc 411 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6742, 66jca 306 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  cop 3637   class class class wbr 4047  wf 5272  cfv 5276  (class class class)co 5951  1st c1st 6231  2nd c2nd 6232  Qcnq 7400  1Qc1q 7401   +Q cplq 7402   <Q cltq 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473
This theorem is referenced by:  cauappcvgprlemcl  7773
  Copyright terms: Public domain W3C validator