ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm GIF version

Theorem cauappcvgprlemm 7840
Description: Lemma for cauappcvgpr 7857. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemm (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐿,𝑟,𝑠   𝐴,𝑠,𝑝   𝐹,𝑙,𝑢,𝑝,𝑞,𝑟,𝑠   𝜑,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 fveq2 5629 . . . . . . 7 (𝑝 = 1Q → (𝐹𝑝) = (𝐹‘1Q))
21breq2d 4095 . . . . . 6 (𝑝 = 1Q → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹‘1Q)))
3 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
4 1nq 7561 . . . . . . 7 1QQ
54a1i 9 . . . . . 6 (𝜑 → 1QQ)
62, 3, 5rspcdva 2912 . . . . 5 (𝜑𝐴 <Q (𝐹‘1Q))
7 ltrelnq 7560 . . . . . . 7 <Q ⊆ (Q × Q)
87brel 4771 . . . . . 6 (𝐴 <Q (𝐹‘1Q) → (𝐴Q ∧ (𝐹‘1Q) ∈ Q))
98simpld 112 . . . . 5 (𝐴 <Q (𝐹‘1Q) → 𝐴Q)
106, 9syl 14 . . . 4 (𝜑𝐴Q)
11 halfnqq 7605 . . . 4 (𝐴Q → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
1210, 11syl 14 . . 3 (𝜑 → ∃𝑠Q (𝑠 +Q 𝑠) = 𝐴)
13 simplr 528 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠Q)
143ad2antrr 488 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
15 fveq2 5629 . . . . . . . . . . . 12 (𝑝 = 𝑠 → (𝐹𝑝) = (𝐹𝑠))
1615breq2d 4095 . . . . . . . . . . 11 (𝑝 = 𝑠 → (𝐴 <Q (𝐹𝑝) ↔ 𝐴 <Q (𝐹𝑠)))
1716rspcv 2903 . . . . . . . . . 10 (𝑠Q → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1817ad2antlr 489 . . . . . . . . 9 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (∀𝑝Q 𝐴 <Q (𝐹𝑝) → 𝐴 <Q (𝐹𝑠)))
1914, 18mpd 13 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝐴 <Q (𝐹𝑠))
20 breq1 4086 . . . . . . . . 9 ((𝑠 +Q 𝑠) = 𝐴 → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2120adantl 277 . . . . . . . 8 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ((𝑠 +Q 𝑠) <Q (𝐹𝑠) ↔ 𝐴 <Q (𝐹𝑠)))
2219, 21mpbird 167 . . . . . . 7 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → (𝑠 +Q 𝑠) <Q (𝐹𝑠))
23 oveq2 6015 . . . . . . . . 9 (𝑞 = 𝑠 → (𝑠 +Q 𝑞) = (𝑠 +Q 𝑠))
24 fveq2 5629 . . . . . . . . 9 (𝑞 = 𝑠 → (𝐹𝑞) = (𝐹𝑠))
2523, 24breq12d 4096 . . . . . . . 8 (𝑞 = 𝑠 → ((𝑠 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑠) <Q (𝐹𝑠)))
2625rspcev 2907 . . . . . . 7 ((𝑠Q ∧ (𝑠 +Q 𝑠) <Q (𝐹𝑠)) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
2713, 22, 26syl2anc 411 . . . . . 6 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞))
28 oveq1 6014 . . . . . . . . 9 (𝑙 = 𝑠 → (𝑙 +Q 𝑞) = (𝑠 +Q 𝑞))
2928breq1d 4093 . . . . . . . 8 (𝑙 = 𝑠 → ((𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3029rexbidv 2531 . . . . . . 7 (𝑙 = 𝑠 → (∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞) ↔ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
31 cauappcvgpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
3231fveq2i 5632 . . . . . . . 8 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
33 nqex 7558 . . . . . . . . . 10 Q ∈ V
3433rabex 4228 . . . . . . . . 9 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)} ∈ V
3533rabex 4228 . . . . . . . . 9 {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢} ∈ V
3634, 35op1st 6298 . . . . . . . 8 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3732, 36eqtri 2250 . . . . . . 7 (1st𝐿) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}
3830, 37elrab2 2962 . . . . . 6 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑞Q (𝑠 +Q 𝑞) <Q (𝐹𝑞)))
3913, 27, 38sylanbrc 417 . . . . 5 (((𝜑𝑠Q) ∧ (𝑠 +Q 𝑠) = 𝐴) → 𝑠 ∈ (1st𝐿))
4039ex 115 . . . 4 ((𝜑𝑠Q) → ((𝑠 +Q 𝑠) = 𝐴𝑠 ∈ (1st𝐿)))
4140reximdva 2632 . . 3 (𝜑 → (∃𝑠Q (𝑠 +Q 𝑠) = 𝐴 → ∃𝑠Q 𝑠 ∈ (1st𝐿)))
4212, 41mpd 13 . 2 (𝜑 → ∃𝑠Q 𝑠 ∈ (1st𝐿))
43 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
4443, 5ffvelcdmd 5773 . . . . 5 (𝜑 → (𝐹‘1Q) ∈ Q)
45 addclnq 7570 . . . . 5 (((𝐹‘1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) ∈ Q)
4644, 5, 45syl2anc 411 . . . 4 (𝜑 → ((𝐹‘1Q) +Q 1Q) ∈ Q)
47 addclnq 7570 . . . 4 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
4846, 5, 47syl2anc 411 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q)
49 ltaddnq 7602 . . . . . 6 ((((𝐹‘1Q) +Q 1Q) ∈ Q ∧ 1QQ) → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
5046, 5, 49syl2anc 411 . . . . 5 (𝜑 → ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
51 fveq2 5629 . . . . . . . 8 (𝑞 = 1Q → (𝐹𝑞) = (𝐹‘1Q))
52 id 19 . . . . . . . 8 (𝑞 = 1Q𝑞 = 1Q)
5351, 52oveq12d 6025 . . . . . . 7 (𝑞 = 1Q → ((𝐹𝑞) +Q 𝑞) = ((𝐹‘1Q) +Q 1Q))
5453breq1d 4093 . . . . . 6 (𝑞 = 1Q → (((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q) ↔ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5554rspcev 2907 . . . . 5 ((1QQ ∧ ((𝐹‘1Q) +Q 1Q) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)) → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
565, 50, 55syl2anc 411 . . . 4 (𝜑 → ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q))
57 breq2 4087 . . . . . 6 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5857rexbidv 2531 . . . . 5 (𝑢 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢 ↔ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
5931fveq2i 5632 . . . . . 6 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩)
6034, 35op2nd 6299 . . . . . 6 (2nd ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6159, 60eqtri 2250 . . . . 5 (2nd𝐿) = {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}
6258, 61elrab2 2962 . . . 4 ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿) ↔ ((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q (((𝐹‘1Q) +Q 1Q) +Q 1Q)))
6348, 56, 62sylanbrc 417 . . 3 (𝜑 → (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿))
64 eleq1 2292 . . . 4 (𝑟 = (((𝐹‘1Q) +Q 1Q) +Q 1Q) → (𝑟 ∈ (2nd𝐿) ↔ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)))
6564rspcev 2907 . . 3 (((((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ Q ∧ (((𝐹‘1Q) +Q 1Q) +Q 1Q) ∈ (2nd𝐿)) → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6648, 63, 65syl2anc 411 . 2 (𝜑 → ∃𝑟Q 𝑟 ∈ (2nd𝐿))
6742, 66jca 306 1 (𝜑 → (∃𝑠Q 𝑠 ∈ (1st𝐿) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4083  wf 5314  cfv 5318  (class class class)co 6007  1st c1st 6290  2nd c2nd 6291  Qcnq 7475  1Qc1q 7476   +Q cplq 7477   <Q cltq 7480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548
This theorem is referenced by:  cauappcvgprlemcl  7848
  Copyright terms: Public domain W3C validator