ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  q2submod GIF version

Theorem q2submod 10537
Description: If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
Assertion
Ref Expression
q2submod (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))

Proof of Theorem q2submod
StepHypRef Expression
1 qcn 9762 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
213ad2ant2 1022 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
32adantr 276 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℂ)
43mulridd 8096 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐵 · 1) = 𝐵)
54oveq2d 5967 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 − (𝐵 · 1)) = (𝐴𝐵))
65oveq1d 5966 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴𝐵) mod 𝐵))
7 simpl1 1003 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℚ)
8 1zzd 9406 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 1 ∈ ℤ)
9 simpl2 1004 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℚ)
10 simpl3 1005 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 0 < 𝐵)
11 modqcyc2 10512 . . 3 (((𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
127, 8, 9, 10, 11syl22anc 1251 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
13 qsubcl 9766 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
147, 9, 13syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴𝐵) ∈ ℚ)
15 simpr 110 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐵𝐴𝐴 < (2 · 𝐵)))
16 qre 9753 . . . . . . . 8 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
177, 16syl 14 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℝ)
18 qre 9753 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
199, 18syl 14 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℝ)
2017, 19subge0d 8615 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
2120bicomd 141 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐵𝐴 ↔ 0 ≤ (𝐴𝐵)))
2232timesd 9287 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (2 · 𝐵) = (𝐵 + 𝐵))
2322breq2d 4059 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵)))
2417, 19, 19ltsubaddd 8621 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴𝐵) < 𝐵𝐴 < (𝐵 + 𝐵)))
2523, 24bitr4d 191 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ (𝐴𝐵) < 𝐵))
2621, 25anbi12d 473 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐵𝐴𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)))
2715, 26mpbid 147 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵))
28 modqid 10501 . . 3 ((((𝐴𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
2914, 9, 27, 28syl21anc 1249 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
306, 12, 293eqtr3d 2247 1 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cle 8115  cmin 8250  2c2 9094  cz 9379  cq 9747   mod cmo 10474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475
This theorem is referenced by:  modifeq2int  10538  modaddmodup  10539
  Copyright terms: Public domain W3C validator