Proof of Theorem q2submod
Step | Hyp | Ref
| Expression |
1 | | qcn 9593 |
. . . . . . 7
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) |
2 | 1 | 3ad2ant2 1014 |
. . . . . 6
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) → 𝐵 ∈ ℂ) |
3 | 2 | adantr 274 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℂ) |
4 | 3 | mulid1d 7937 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐵 · 1) = 𝐵) |
5 | 4 | oveq2d 5869 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 − (𝐵 · 1)) = (𝐴 − 𝐵)) |
6 | 5 | oveq1d 5868 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴 − 𝐵) mod 𝐵)) |
7 | | simpl1 995 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℚ) |
8 | | 1zzd 9239 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 1 ∈
ℤ) |
9 | | simpl2 996 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℚ) |
10 | | simpl3 997 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 0 < 𝐵) |
11 | | modqcyc2 10316 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 1 ∈
ℤ) ∧ (𝐵 ∈
ℚ ∧ 0 < 𝐵))
→ ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) |
12 | 7, 8, 9, 10, 11 | syl22anc 1234 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) |
13 | | qsubcl 9597 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 − 𝐵) ∈ ℚ) |
14 | 7, 9, 13 | syl2anc 409 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 − 𝐵) ∈ ℚ) |
15 | | simpr 109 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) |
16 | | qre 9584 |
. . . . . . . 8
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
17 | 7, 16 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℝ) |
18 | | qre 9584 |
. . . . . . . 8
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℝ) |
19 | 9, 18 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℝ) |
20 | 17, 19 | subge0d 8454 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
21 | 20 | bicomd 140 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐵 ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) |
22 | 3 | 2timesd 9120 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (2 · 𝐵) = (𝐵 + 𝐵)) |
23 | 22 | breq2d 4001 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵))) |
24 | 17, 19, 19 | ltsubaddd 8460 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − 𝐵) < 𝐵 ↔ 𝐴 < (𝐵 + 𝐵))) |
25 | 23, 24 | bitr4d 190 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ (𝐴 − 𝐵) < 𝐵)) |
26 | 21, 25 | anbi12d 470 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵))) |
27 | 15, 26 | mpbid 146 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) |
28 | | modqid 10305 |
. . 3
⊢ ((((𝐴 − 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) |
29 | 14, 9, 27, 28 | syl21anc 1232 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) |
30 | 6, 12, 29 | 3eqtr3d 2211 |
1
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |