ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  q2submod GIF version

Theorem q2submod 10574
Description: If a number is between a modulus and twice the modulus, the first number modulo the modulus equals the first number minus the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.)
Assertion
Ref Expression
q2submod (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))

Proof of Theorem q2submod
StepHypRef Expression
1 qcn 9797 . . . . . . 7 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
213ad2ant2 1024 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
32adantr 276 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℂ)
43mulridd 8131 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐵 · 1) = 𝐵)
54oveq2d 5990 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 − (𝐵 · 1)) = (𝐴𝐵))
65oveq1d 5989 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴𝐵) mod 𝐵))
7 simpl1 1005 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℚ)
8 1zzd 9441 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 1 ∈ ℤ)
9 simpl2 1006 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℚ)
10 simpl3 1007 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 0 < 𝐵)
11 modqcyc2 10549 . . 3 (((𝐴 ∈ ℚ ∧ 1 ∈ ℤ) ∧ (𝐵 ∈ ℚ ∧ 0 < 𝐵)) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
127, 8, 9, 10, 11syl22anc 1253 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵))
13 qsubcl 9801 . . . 4 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴𝐵) ∈ ℚ)
147, 9, 13syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴𝐵) ∈ ℚ)
15 simpr 110 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐵𝐴𝐴 < (2 · 𝐵)))
16 qre 9788 . . . . . . . 8 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
177, 16syl 14 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℝ)
18 qre 9788 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℝ)
199, 18syl 14 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℝ)
2017, 19subge0d 8650 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴𝐵) ↔ 𝐵𝐴))
2120bicomd 141 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐵𝐴 ↔ 0 ≤ (𝐴𝐵)))
2232timesd 9322 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (2 · 𝐵) = (𝐵 + 𝐵))
2322breq2d 4074 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵)))
2417, 19, 19ltsubaddd 8656 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴𝐵) < 𝐵𝐴 < (𝐵 + 𝐵)))
2523, 24bitr4d 191 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ (𝐴𝐵) < 𝐵))
2621, 25anbi12d 473 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐵𝐴𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)))
2715, 26mpbid 147 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵))
28 modqid 10538 . . 3 ((((𝐴𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ (𝐴𝐵) ∧ (𝐴𝐵) < 𝐵)) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
2914, 9, 27, 28syl21anc 1251 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → ((𝐴𝐵) mod 𝐵) = (𝐴𝐵))
306, 12, 293eqtr3d 2250 1 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) ∧ (𝐵𝐴𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150  cmin 8285  2c2 9129  cz 9414  cq 9782   mod cmo 10511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-q 9783  df-rp 9818  df-fl 10457  df-mod 10512
This theorem is referenced by:  modifeq2int  10575  modaddmodup  10576
  Copyright terms: Public domain W3C validator