Proof of Theorem q2submod
| Step | Hyp | Ref
| Expression |
| 1 | | qcn 9708 |
. . . . . . 7
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) |
| 2 | 1 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) → 𝐵 ∈ ℂ) |
| 3 | 2 | adantr 276 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℂ) |
| 4 | 3 | mulridd 8043 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐵 · 1) = 𝐵) |
| 5 | 4 | oveq2d 5938 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 − (𝐵 · 1)) = (𝐴 − 𝐵)) |
| 6 | 5 | oveq1d 5937 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = ((𝐴 − 𝐵) mod 𝐵)) |
| 7 | | simpl1 1002 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℚ) |
| 8 | | 1zzd 9353 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 1 ∈
ℤ) |
| 9 | | simpl2 1003 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℚ) |
| 10 | | simpl3 1004 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 0 < 𝐵) |
| 11 | | modqcyc2 10452 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 1 ∈
ℤ) ∧ (𝐵 ∈
ℚ ∧ 0 < 𝐵))
→ ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) |
| 12 | 7, 8, 9, 10, 11 | syl22anc 1250 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − (𝐵 · 1)) mod 𝐵) = (𝐴 mod 𝐵)) |
| 13 | | qsubcl 9712 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 − 𝐵) ∈ ℚ) |
| 14 | 7, 9, 13 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 − 𝐵) ∈ ℚ) |
| 15 | | simpr 110 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) |
| 16 | | qre 9699 |
. . . . . . . 8
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℝ) |
| 17 | 7, 16 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐴 ∈ ℝ) |
| 18 | | qre 9699 |
. . . . . . . 8
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℝ) |
| 19 | 9, 18 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → 𝐵 ∈ ℝ) |
| 20 | 17, 19 | subge0d 8562 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
| 21 | 20 | bicomd 141 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐵 ≤ 𝐴 ↔ 0 ≤ (𝐴 − 𝐵))) |
| 22 | 3 | 2timesd 9234 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (2 · 𝐵) = (𝐵 + 𝐵)) |
| 23 | 22 | breq2d 4045 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ 𝐴 < (𝐵 + 𝐵))) |
| 24 | 17, 19, 19 | ltsubaddd 8568 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − 𝐵) < 𝐵 ↔ 𝐴 < (𝐵 + 𝐵))) |
| 25 | 23, 24 | bitr4d 191 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 < (2 · 𝐵) ↔ (𝐴 − 𝐵) < 𝐵)) |
| 26 | 21, 25 | anbi12d 473 |
. . . 4
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵)) ↔ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵))) |
| 27 | 15, 26 | mpbid 147 |
. . 3
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) |
| 28 | | modqid 10441 |
. . 3
⊢ ((((𝐴 − 𝐵) ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (0 ≤ (𝐴 − 𝐵) ∧ (𝐴 − 𝐵) < 𝐵)) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) |
| 29 | 14, 9, 27, 28 | syl21anc 1248 |
. 2
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → ((𝐴 − 𝐵) mod 𝐵) = (𝐴 − 𝐵)) |
| 30 | 6, 12, 29 | 3eqtr3d 2237 |
1
⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 <
𝐵) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 < (2 · 𝐵))) → (𝐴 mod 𝐵) = (𝐴 − 𝐵)) |