ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxltsup GIF version

Theorem maxltsup 11573
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
Assertion
Ref Expression
maxltsup ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem maxltsup
StepHypRef Expression
1 simpl1 1003 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 ∈ ℝ)
2 simpl2 1004 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 ∈ ℝ)
3 maxcl 11565 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
41, 2, 3syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
5 simpl3 1005 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐶 ∈ ℝ)
6 maxle1 11566 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
763adant3 1020 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
87adantr 276 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
9 simpr 110 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
101, 4, 5, 8, 9lelttrd 8204 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 < 𝐶)
11 maxle2 11567 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
121, 2, 11syl2anc 411 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
132, 4, 5, 12, 9lelttrd 8204 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 306 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 maxabs 11564 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
16153adant3 1020 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
1716adantr 276 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
18 2re 9113 . . . . . . . . . . . 12 2 ∈ ℝ
1918a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 2 ∈ ℝ)
20 simpl3 1005 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐶 ∈ ℝ)
2119, 20remulcld 8110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐶) ∈ ℝ)
2221recnd 8108 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐶) ∈ ℂ)
23 simpl1 1003 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 ∈ ℝ)
2423recnd 8108 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 ∈ ℂ)
25 simpl2 1004 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
2625recnd 8108 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 ∈ ℂ)
2724, 26addcld 8099 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) ∈ ℂ)
2822, 27negsubdi2d 8406 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → -((2 · 𝐶) − (𝐴 + 𝐵)) = ((𝐴 + 𝐵) − (2 · 𝐶)))
2923, 25readdcld 8109 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) ∈ ℝ)
3023, 25resubcld 8460 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) ∈ ℝ)
31262timesd 9287 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) = (𝐵 + 𝐵))
3224, 26, 26pnncand 8429 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
3331, 32eqtr4d 2242 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) = ((𝐴 + 𝐵) − (𝐴𝐵)))
34 2rp 9787 . . . . . . . . . . . 12 2 ∈ ℝ+
3534a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 2 ∈ ℝ+)
36 simprr 531 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
3725, 20, 35, 36ltmul2dd 9882 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) < (2 · 𝐶))
3833, 37eqbrtrrd 4071 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (𝐴𝐵)) < (2 · 𝐶))
3929, 30, 21, 38ltsub23d 8630 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (2 · 𝐶)) < (𝐴𝐵))
4028, 39eqbrtrd 4069 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → -((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵))
4124, 26, 24nppcan3d 8417 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) = (𝐴 + 𝐴))
42242timesd 9287 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐴) = (𝐴 + 𝐴))
4341, 42eqtr4d 2242 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) = (2 · 𝐴))
44 simprl 529 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
4523, 20, 35, 44ltmul2dd 9882 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐴) < (2 · 𝐶))
4643, 45eqbrtrd 4069 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) < (2 · 𝐶))
4730, 29, 21ltaddsubd 8625 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴𝐵) + (𝐴 + 𝐵)) < (2 · 𝐶) ↔ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵))))
4846, 47mpbid 147 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵)))
4940, 48jca 306 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (-((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵) ∧ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵))))
5021, 29resubcld 8460 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((2 · 𝐶) − (𝐴 + 𝐵)) ∈ ℝ)
5130, 50absltd 11529 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵)) ↔ (-((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵) ∧ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵)))))
5249, 51mpbird 167 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵)))
5330recnd 8108 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) ∈ ℂ)
5453abscld 11536 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (abs‘(𝐴𝐵)) ∈ ℝ)
5529, 54, 21ltaddsub2d 8626 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵))))
5652, 55mpbird 167 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶))
5729, 54readdcld 8109 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
5857, 20, 35ltdivmuld 9877 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐶 ↔ ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶)))
5956, 58mpbird 167 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐶)
6017, 59eqbrtrd 4069 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
6114, 60impbida 596 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  {cpr 3635   class class class wbr 4047  cfv 5276  (class class class)co 5951  supcsup 7091  cr 7931   + caddc 7935   · cmul 7937   < clt 8114  cle 8115  cmin 8250  -cneg 8251   / cdiv 8752  2c2 9094  +crp 9782  abscabs 11352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354
This theorem is referenced by:  ltmininf  11590  xrmaxltsup  11613  suplociccreex  15140  hovera  15163
  Copyright terms: Public domain W3C validator