ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxltsup GIF version

Theorem maxltsup 11129
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
Assertion
Ref Expression
maxltsup ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem maxltsup
StepHypRef Expression
1 simpl1 985 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 ∈ ℝ)
2 simpl2 986 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 ∈ ℝ)
3 maxcl 11121 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
41, 2, 3syl2anc 409 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
5 simpl3 987 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐶 ∈ ℝ)
6 maxle1 11122 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
763adant3 1002 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
87adantr 274 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
9 simpr 109 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
101, 4, 5, 8, 9lelttrd 8004 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 < 𝐶)
11 maxle2 11123 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
121, 2, 11syl2anc 409 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
132, 4, 5, 12, 9lelttrd 8004 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 304 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 maxabs 11120 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
16153adant3 1002 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
1716adantr 274 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
18 2re 8908 . . . . . . . . . . . 12 2 ∈ ℝ
1918a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 2 ∈ ℝ)
20 simpl3 987 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐶 ∈ ℝ)
2119, 20remulcld 7910 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐶) ∈ ℝ)
2221recnd 7908 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐶) ∈ ℂ)
23 simpl1 985 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 ∈ ℝ)
2423recnd 7908 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 ∈ ℂ)
25 simpl2 986 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
2625recnd 7908 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 ∈ ℂ)
2724, 26addcld 7899 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) ∈ ℂ)
2822, 27negsubdi2d 8206 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → -((2 · 𝐶) − (𝐴 + 𝐵)) = ((𝐴 + 𝐵) − (2 · 𝐶)))
2923, 25readdcld 7909 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) ∈ ℝ)
3023, 25resubcld 8260 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) ∈ ℝ)
31262timesd 9080 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) = (𝐵 + 𝐵))
3224, 26, 26pnncand 8229 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
3331, 32eqtr4d 2193 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) = ((𝐴 + 𝐵) − (𝐴𝐵)))
34 2rp 9571 . . . . . . . . . . . 12 2 ∈ ℝ+
3534a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 2 ∈ ℝ+)
36 simprr 522 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
3725, 20, 35, 36ltmul2dd 9666 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) < (2 · 𝐶))
3833, 37eqbrtrrd 3990 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (𝐴𝐵)) < (2 · 𝐶))
3929, 30, 21, 38ltsub23d 8429 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (2 · 𝐶)) < (𝐴𝐵))
4028, 39eqbrtrd 3988 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → -((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵))
4124, 26, 24nppcan3d 8217 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) = (𝐴 + 𝐴))
42242timesd 9080 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐴) = (𝐴 + 𝐴))
4341, 42eqtr4d 2193 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) = (2 · 𝐴))
44 simprl 521 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
4523, 20, 35, 44ltmul2dd 9666 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐴) < (2 · 𝐶))
4643, 45eqbrtrd 3988 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) < (2 · 𝐶))
4730, 29, 21ltaddsubd 8424 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴𝐵) + (𝐴 + 𝐵)) < (2 · 𝐶) ↔ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵))))
4846, 47mpbid 146 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵)))
4940, 48jca 304 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (-((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵) ∧ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵))))
5021, 29resubcld 8260 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((2 · 𝐶) − (𝐴 + 𝐵)) ∈ ℝ)
5130, 50absltd 11085 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵)) ↔ (-((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵) ∧ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵)))))
5249, 51mpbird 166 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵)))
5330recnd 7908 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) ∈ ℂ)
5453abscld 11092 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (abs‘(𝐴𝐵)) ∈ ℝ)
5529, 54, 21ltaddsub2d 8425 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵))))
5652, 55mpbird 166 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶))
5729, 54readdcld 7909 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
5857, 20, 35ltdivmuld 9661 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐶 ↔ ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶)))
5956, 58mpbird 166 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐶)
6017, 59eqbrtrd 3988 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
6114, 60impbida 586 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  {cpr 3562   class class class wbr 3967  cfv 5172  (class class class)co 5826  supcsup 6928  cr 7733   + caddc 7737   · cmul 7739   < clt 7914  cle 7915  cmin 8050  -cneg 8051   / cdiv 8549  2c2 8889  +crp 9566  abscabs 10908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-sup 6930  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-rp 9567  df-seqfrec 10354  df-exp 10428  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910
This theorem is referenced by:  ltmininf  11145  xrmaxltsup  11166  suplociccreex  13072
  Copyright terms: Public domain W3C validator