ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxltsup GIF version

Theorem maxltsup 10476
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
Assertion
Ref Expression
maxltsup ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem maxltsup
StepHypRef Expression
1 simpl1 942 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 ∈ ℝ)
2 simpl2 943 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 ∈ ℝ)
3 maxcl 10468 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
41, 2, 3syl2anc 403 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
5 simpl3 944 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐶 ∈ ℝ)
6 maxle1 10469 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
763adant3 959 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
87adantr 270 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
9 simpr 108 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
101, 4, 5, 8, 9lelttrd 7509 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐴 < 𝐶)
11 maxle2 10470 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
121, 2, 11syl2anc 403 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
132, 4, 5, 12, 9lelttrd 7509 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → 𝐵 < 𝐶)
1410, 13jca 300 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ sup({𝐴, 𝐵}, ℝ, < ) < 𝐶) → (𝐴 < 𝐶𝐵 < 𝐶))
15 maxabs 10467 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
16153adant3 959 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
1716adantr 270 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
18 2re 8384 . . . . . . . . . . . 12 2 ∈ ℝ
1918a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 2 ∈ ℝ)
20 simpl3 944 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐶 ∈ ℝ)
2119, 20remulcld 7419 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐶) ∈ ℝ)
2221recnd 7417 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐶) ∈ ℂ)
23 simpl1 942 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 ∈ ℝ)
2423recnd 7417 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 ∈ ℂ)
25 simpl2 943 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
2625recnd 7417 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 ∈ ℂ)
2724, 26addcld 7408 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) ∈ ℂ)
2822, 27negsubdi2d 7710 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → -((2 · 𝐶) − (𝐴 + 𝐵)) = ((𝐴 + 𝐵) − (2 · 𝐶)))
2923, 25readdcld 7418 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴 + 𝐵) ∈ ℝ)
3023, 25resubcld 7760 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) ∈ ℝ)
31262timesd 8548 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) = (𝐵 + 𝐵))
3224, 26, 26pnncand 7733 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
3331, 32eqtr4d 2118 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) = ((𝐴 + 𝐵) − (𝐴𝐵)))
34 2rp 9032 . . . . . . . . . . . 12 2 ∈ ℝ+
3534a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 2 ∈ ℝ+)
36 simprr 499 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐵 < 𝐶)
3725, 20, 35, 36ltmul2dd 9123 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐵) < (2 · 𝐶))
3833, 37eqbrtrrd 3833 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (𝐴𝐵)) < (2 · 𝐶))
3929, 30, 21, 38ltsub23d 7925 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) − (2 · 𝐶)) < (𝐴𝐵))
4028, 39eqbrtrd 3831 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → -((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵))
4124, 26, 24nppcan3d 7721 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) = (𝐴 + 𝐴))
42242timesd 8548 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐴) = (𝐴 + 𝐴))
4341, 42eqtr4d 2118 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) = (2 · 𝐴))
44 simprl 498 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → 𝐴 < 𝐶)
4523, 20, 35, 44ltmul2dd 9123 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (2 · 𝐴) < (2 · 𝐶))
4643, 45eqbrtrd 3831 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴𝐵) + (𝐴 + 𝐵)) < (2 · 𝐶))
4730, 29, 21ltaddsubd 7920 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴𝐵) + (𝐴 + 𝐵)) < (2 · 𝐶) ↔ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵))))
4846, 47mpbid 145 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵)))
4940, 48jca 300 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (-((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵) ∧ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵))))
5021, 29resubcld 7760 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((2 · 𝐶) − (𝐴 + 𝐵)) ∈ ℝ)
5130, 50absltd 10432 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵)) ↔ (-((2 · 𝐶) − (𝐴 + 𝐵)) < (𝐴𝐵) ∧ (𝐴𝐵) < ((2 · 𝐶) − (𝐴 + 𝐵)))))
5249, 51mpbird 165 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵)))
5330recnd 7417 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (𝐴𝐵) ∈ ℂ)
5453abscld 10439 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (abs‘(𝐴𝐵)) ∈ ℝ)
5529, 54, 21ltaddsub2d 7921 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶) ↔ (abs‘(𝐴𝐵)) < ((2 · 𝐶) − (𝐴 + 𝐵))))
5652, 55mpbird 165 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶))
5729, 54readdcld 7418 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) ∈ ℝ)
5857, 20, 35ltdivmuld 9118 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐶 ↔ ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) < (2 · 𝐶)))
5956, 58mpbird 165 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝐶)
6017, 59eqbrtrd 3831 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 < 𝐶𝐵 < 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) < 𝐶)
6114, 60impbida 561 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  {cpr 3423   class class class wbr 3811  cfv 4967  (class class class)co 5589  supcsup 6582  cr 7250   + caddc 7254   · cmul 7256   < clt 7423  cle 7424  cmin 7554  -cneg 7555   / cdiv 8035  2c2 8364  +crp 9027  abscabs 10255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7337  ax-resscn 7338  ax-1cn 7339  ax-1re 7340  ax-icn 7341  ax-addcl 7342  ax-addrcl 7343  ax-mulcl 7344  ax-mulrcl 7345  ax-addcom 7346  ax-mulcom 7347  ax-addass 7348  ax-mulass 7349  ax-distr 7350  ax-i2m1 7351  ax-0lt1 7352  ax-1rid 7353  ax-0id 7354  ax-rnegex 7355  ax-precex 7356  ax-cnre 7357  ax-pre-ltirr 7358  ax-pre-ltwlin 7359  ax-pre-lttrn 7360  ax-pre-apti 7361  ax-pre-ltadd 7362  ax-pre-mulgt0 7363  ax-pre-mulext 7364  ax-arch 7365  ax-caucvg 7366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-riota 5545  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-frec 6086  df-sup 6584  df-pnf 7425  df-mnf 7426  df-xr 7427  df-ltxr 7428  df-le 7429  df-sub 7556  df-neg 7557  df-reap 7950  df-ap 7957  df-div 8036  df-inn 8315  df-2 8373  df-3 8374  df-4 8375  df-n0 8564  df-z 8645  df-uz 8913  df-rp 9028  df-iseq 9739  df-iexp 9790  df-cj 10101  df-re 10102  df-im 10103  df-rsqrt 10256  df-abs 10257
This theorem is referenced by:  ltmininf  10488
  Copyright terms: Public domain W3C validator