![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4ap0 | GIF version |
Description: The number 4 is apart from zero. (Contributed by Jim Kingdon, 10-Oct-2021.) |
Ref | Expression |
---|---|
4ap0 | ⊢ 4 # 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 9061 | . 2 ⊢ 4 ∈ ℝ | |
2 | 4pos 9081 | . 2 ⊢ 0 < 4 | |
3 | 1, 2 | gt0ap0ii 8649 | 1 ⊢ 4 # 0 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4030 0cc0 7874 # cap 8602 4c4 9037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-2 9043 df-3 9044 df-4 9045 |
This theorem is referenced by: div4p1lem1div2 9239 fldiv4p1lem1div2 10377 sqoddm1div8 10767 4bc2eq6 10848 flodddiv4 12078 coseq0negpitopi 15012 sincos4thpi 15016 sincos6thpi 15018 gausslemma2dlem3 15220 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 |
Copyright terms: Public domain | W3C validator |