![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expcan | GIF version |
Description: Cancellation law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expcan | ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1002 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) | |
2 | simpl2 1003 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑀 ∈ ℤ) | |
3 | simpl3 1004 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑁 ∈ ℤ) | |
4 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 < 𝐴) | |
5 | 1, 2, 3, 4 | expcanlem 10713 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) ≤ (𝐴↑𝑁) → 𝑀 ≤ 𝑁)) |
6 | 1, 3, 2, 4 | expcanlem 10713 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑁) ≤ (𝐴↑𝑀) → 𝑁 ≤ 𝑀)) |
7 | 5, 6 | anim12d 335 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (((𝐴↑𝑀) ≤ (𝐴↑𝑁) ∧ (𝐴↑𝑁) ≤ (𝐴↑𝑀)) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
8 | 0red 7976 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 ∈ ℝ) | |
9 | 1red 7990 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
10 | 0lt1 8102 | . . . . . . . 8 ⊢ 0 < 1 | |
11 | 10 | a1i 9 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 1) |
12 | 8, 9, 1, 11, 4 | lttrd 8101 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 0 < 𝐴) |
13 | 1, 12 | gt0ap0d 8604 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝐴 # 0) |
14 | 1, 13, 2 | reexpclzapd 10697 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴↑𝑀) ∈ ℝ) |
15 | 1, 13, 3 | reexpclzapd 10697 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝐴↑𝑁) ∈ ℝ) |
16 | 14, 15 | letri3d 8091 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ ((𝐴↑𝑀) ≤ (𝐴↑𝑁) ∧ (𝐴↑𝑁) ≤ (𝐴↑𝑀)))) |
17 | 2 | zred 9393 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑀 ∈ ℝ) |
18 | 3 | zred 9393 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → 𝑁 ∈ ℝ) |
19 | 17, 18 | letri3d 8091 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
20 | 7, 16, 19 | 3imtr4d 203 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) → 𝑀 = 𝑁)) |
21 | oveq2 5899 | . 2 ⊢ (𝑀 = 𝑁 → (𝐴↑𝑀) = (𝐴↑𝑁)) | |
22 | 20, 21 | impbid1 142 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → ((𝐴↑𝑀) = (𝐴↑𝑁) ↔ 𝑀 = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5891 ℝcr 7828 0cc0 7829 1c1 7830 < clt 8010 ≤ cle 8011 ℤcz 9271 ↑cexp 10537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-frec 6410 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 df-inn 8938 df-n0 9195 df-z 9272 df-uz 9547 df-rp 9672 df-seqfrec 10464 df-exp 10538 |
This theorem is referenced by: expcand 10715 |
Copyright terms: Public domain | W3C validator |