ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddc2 GIF version

Theorem decaddc2 9442
Description: Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decaddc.e ((𝐴 + 𝐶) + 1) = 𝐸
decaddc2.t (𝐵 + 𝐷) = 10
Assertion
Ref Expression
decaddc2 (𝑀 + 𝑁) = 𝐸0

Proof of Theorem decaddc2
StepHypRef Expression
1 decma.a . 2 𝐴 ∈ ℕ0
2 decma.b . 2 𝐵 ∈ ℕ0
3 decma.c . 2 𝐶 ∈ ℕ0
4 decma.d . 2 𝐷 ∈ ℕ0
5 decma.m . 2 𝑀 = 𝐴𝐵
6 decma.n . 2 𝑁 = 𝐶𝐷
7 decaddc.e . 2 ((𝐴 + 𝐶) + 1) = 𝐸
8 0nn0 9194 . 2 0 ∈ ℕ0
9 decaddc2.t . 2 (𝐵 + 𝐷) = 10
101, 2, 3, 4, 5, 6, 7, 8, 9decaddc 9441 1 (𝑀 + 𝑁) = 𝐸0
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  (class class class)co 5878  0cc0 7814  1c1 7815   + caddc 7817  0cn0 9179  cdc 9387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sub 8133  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986  df-8 8987  df-9 8988  df-n0 9180  df-dec 9388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator