| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decaddc2 | GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decma.a | ⊢ 𝐴 ∈ ℕ0 |
| decma.b | ⊢ 𝐵 ∈ ℕ0 |
| decma.c | ⊢ 𝐶 ∈ ℕ0 |
| decma.d | ⊢ 𝐷 ∈ ℕ0 |
| decma.m | ⊢ 𝑀 = ;𝐴𝐵 |
| decma.n | ⊢ 𝑁 = ;𝐶𝐷 |
| decaddc.e | ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 |
| decaddc2.t | ⊢ (𝐵 + 𝐷) = ;10 |
| Ref | Expression |
|---|---|
| decaddc2 | ⊢ (𝑀 + 𝑁) = ;𝐸0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decma.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decma.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decma.c | . 2 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decma.d | . 2 ⊢ 𝐷 ∈ ℕ0 | |
| 5 | decma.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | decma.n | . 2 ⊢ 𝑁 = ;𝐶𝐷 | |
| 7 | decaddc.e | . 2 ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 | |
| 8 | 0nn0 9380 | . 2 ⊢ 0 ∈ ℕ0 | |
| 9 | decaddc2.t | . 2 ⊢ (𝐵 + 𝐷) = ;10 | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | decaddc 9628 | 1 ⊢ (𝑀 + 𝑁) = ;𝐸0 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 ℕ0cn0 9365 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |