| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > decmac | GIF version | ||
| Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| decma.a | ⊢ 𝐴 ∈ ℕ0 | 
| decma.b | ⊢ 𝐵 ∈ ℕ0 | 
| decma.c | ⊢ 𝐶 ∈ ℕ0 | 
| decma.d | ⊢ 𝐷 ∈ ℕ0 | 
| decma.m | ⊢ 𝑀 = ;𝐴𝐵 | 
| decma.n | ⊢ 𝑁 = ;𝐶𝐷 | 
| decmac.p | ⊢ 𝑃 ∈ ℕ0 | 
| decmac.f | ⊢ 𝐹 ∈ ℕ0 | 
| decmac.g | ⊢ 𝐺 ∈ ℕ0 | 
| decmac.e | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | 
| decmac.2 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 | 
| Ref | Expression | 
|---|---|
| decmac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 10nn0 9474 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | decma.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decma.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decma.c | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | decma.d | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 6 | decma.m | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
| 7 | dfdec10 9460 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 8 | 6, 7 | eqtri 2217 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) | 
| 9 | decma.n | . . . 4 ⊢ 𝑁 = ;𝐶𝐷 | |
| 10 | dfdec10 9460 | . . . 4 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 11 | 9, 10 | eqtri 2217 | . . 3 ⊢ 𝑁 = ((;10 · 𝐶) + 𝐷) | 
| 12 | decmac.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 13 | decmac.f | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
| 14 | decmac.g | . . 3 ⊢ 𝐺 ∈ ℕ0 | |
| 15 | decmac.e | . . 3 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
| 16 | decmac.2 | . . . 4 ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 | |
| 17 | dfdec10 9460 | . . . 4 ⊢ ;𝐺𝐹 = ((;10 · 𝐺) + 𝐹) | |
| 18 | 16, 17 | eqtri 2217 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((;10 · 𝐺) + 𝐹) | 
| 19 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18 | nummac 9501 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((;10 · 𝐸) + 𝐹) | 
| 20 | dfdec10 9460 | . 2 ⊢ ;𝐸𝐹 = ((;10 · 𝐸) + 𝐹) | |
| 21 | 19, 20 | eqtr4i 2220 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 · cmul 7884 ℕ0cn0 9249 ;cdc 9457 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-dec 9458 | 
| This theorem is referenced by: decrmac 9514 2exp16 12606 | 
| Copyright terms: Public domain | W3C validator |