ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmac GIF version

Theorem decmac 9502
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decma.a 𝐴 ∈ ℕ0
decma.b 𝐵 ∈ ℕ0
decma.c 𝐶 ∈ ℕ0
decma.d 𝐷 ∈ ℕ0
decma.m 𝑀 = 𝐴𝐵
decma.n 𝑁 = 𝐶𝐷
decmac.p 𝑃 ∈ ℕ0
decmac.f 𝐹 ∈ ℕ0
decmac.g 𝐺 ∈ ℕ0
decmac.e ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
decmac.2 ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹
Assertion
Ref Expression
decmac ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decmac
StepHypRef Expression
1 10nn0 9468 . . 3 10 ∈ ℕ0
2 decma.a . . 3 𝐴 ∈ ℕ0
3 decma.b . . 3 𝐵 ∈ ℕ0
4 decma.c . . 3 𝐶 ∈ ℕ0
5 decma.d . . 3 𝐷 ∈ ℕ0
6 decma.m . . . 4 𝑀 = 𝐴𝐵
7 dfdec10 9454 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7eqtri 2214 . . 3 𝑀 = ((10 · 𝐴) + 𝐵)
9 decma.n . . . 4 𝑁 = 𝐶𝐷
10 dfdec10 9454 . . . 4 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
119, 10eqtri 2214 . . 3 𝑁 = ((10 · 𝐶) + 𝐷)
12 decmac.p . . 3 𝑃 ∈ ℕ0
13 decmac.f . . 3 𝐹 ∈ ℕ0
14 decmac.g . . 3 𝐺 ∈ ℕ0
15 decmac.e . . 3 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
16 decmac.2 . . . 4 ((𝐵 · 𝑃) + 𝐷) = 𝐺𝐹
17 dfdec10 9454 . . . 4 𝐺𝐹 = ((10 · 𝐺) + 𝐹)
1816, 17eqtri 2214 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((10 · 𝐺) + 𝐹)
191, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15, 18nummac 9495 . 2 ((𝑀 · 𝑃) + 𝑁) = ((10 · 𝐸) + 𝐹)
20 dfdec10 9454 . 2 𝐸𝐹 = ((10 · 𝐸) + 𝐹)
2119, 20eqtr4i 2217 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  (class class class)co 5919  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879  0cn0 9243  cdc 9451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-dec 9452
This theorem is referenced by:  decrmac  9508
  Copyright terms: Public domain W3C validator