![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elbl3 | GIF version |
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.) |
Ref | Expression |
---|---|
elbl3 | β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (π΄π·π) < π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elbl2 13978 | . 2 β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (ππ·π΄) < π )) | |
2 | xmetsym 13953 | . . . . 5 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β (ππ·π΄) = (π΄π·π)) | |
3 | 2 | 3expb 1204 | . . . 4 β’ ((π· β (βMetβπ) β§ (π β π β§ π΄ β π)) β (ππ·π΄) = (π΄π·π)) |
4 | 3 | adantlr 477 | . . 3 β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (ππ·π΄) = (π΄π·π)) |
5 | 4 | breq1d 4015 | . 2 β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β ((ππ·π΄) < π β (π΄π·π) < π )) |
6 | 1, 5 | bitrd 188 | 1 β’ (((π· β (βMetβπ) β§ π β β*) β§ (π β π β§ π΄ β π)) β (π΄ β (π(ballβπ·)π ) β (π΄π·π) < π )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 class class class wbr 4005 βcfv 5218 (class class class)co 5877 β*cxr 7993 < clt 7994 βMetcxmet 13525 ballcbl 13527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-apti 7928 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-map 6652 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-xadd 9775 df-psmet 13532 df-xmet 13533 df-bl 13535 |
This theorem is referenced by: blcom 13982 |
Copyright terms: Public domain | W3C validator |