![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzm | GIF version |
Description: Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.) |
Ref | Expression |
---|---|
fzm | ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz2 9338 | . . 3 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | exlimiv 1530 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
3 | eluzfz1 9340 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
4 | elex2 2626 | . . 3 ⊢ (𝑀 ∈ (𝑀...𝑁) → ∃𝑥 𝑥 ∈ (𝑀...𝑁)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ∃𝑥 𝑥 ∈ (𝑀...𝑁)) |
6 | 2, 5 | impbii 124 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∃wex 1422 ∈ wcel 1434 ‘cfv 4969 (class class class)co 5591 ℤ≥cuz 8914 ...cfz 9319 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-mpt 3867 df-id 4084 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-neg 7559 df-z 8647 df-uz 8915 df-fz 9320 |
This theorem is referenced by: fzn 9351 |
Copyright terms: Public domain | W3C validator |