![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzm | GIF version |
Description: Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.) |
Ref | Expression |
---|---|
fzm | ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz2 10043 | . . 3 ⊢ (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | exlimiv 1608 | . 2 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
3 | eluzfz1 10045 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
4 | elex2 2765 | . . 3 ⊢ (𝑀 ∈ (𝑀...𝑁) → ∃𝑥 𝑥 ∈ (𝑀...𝑁)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ∃𝑥 𝑥 ∈ (𝑀...𝑁)) |
6 | 2, 5 | impbii 126 | 1 ⊢ (∃𝑥 𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1502 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℤ≥cuz 9542 ...cfz 10022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-neg 8145 df-z 9268 df-uz 9543 df-fz 10023 |
This theorem is referenced by: fzn 10056 |
Copyright terms: Public domain | W3C validator |