ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz2 GIF version

Theorem elfzuz2 9650
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 9641 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
2 eqid 2100 . . 3 (ℤ𝑀) = (ℤ𝑀)
32uztrn2 9193 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 120 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1448  cfv 5059  (class class class)co 5706  cuz 9176  ...cfz 9631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-pre-ltwlin 7608
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-neg 7807  df-z 8907  df-uz 9177  df-fz 9632
This theorem is referenced by:  elfzle3  9651  elfzubelfz  9657  fzm  9659  fzopth  9682  elfzmlbm  9749  elfzom1elp1fzo  9820  iseqf1olemqk  10108  bcm1k  10347  bcpasc  10353  seq3coll  10426
  Copyright terms: Public domain W3C validator