| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmco | GIF version | ||
| Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| ghmco | ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm 13776 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹 ∈ (𝑇 MndHom 𝑈)) | |
| 2 | ghmmhm 13776 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺 ∈ (𝑆 MndHom 𝑇)) | |
| 3 | mhmco 13509 | . . 3 ⊢ ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MndHom 𝑈)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 MndHom 𝑈)) |
| 5 | ghmgrp1 13768 | . . 3 ⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
| 6 | ghmgrp2 13769 | . . 3 ⊢ (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝑈 ∈ Grp) | |
| 7 | ghmmhmb 13777 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑈 ∈ Grp) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) | |
| 8 | 5, 6, 7 | syl2anr 290 | . 2 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈)) |
| 9 | 4, 8 | eleqtrrd 2309 | 1 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∘ ccom 4720 (class class class)co 5994 MndHom cmhm 13476 Grpcgrp 13519 GrpHom cghm 13763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mhm 13478 df-grp 13522 df-ghm 13764 |
| This theorem is referenced by: rhmco 14123 |
| Copyright terms: Public domain | W3C validator |