ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isghmd GIF version

Theorem isghmd 13458
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
isghmd.x 𝑋 = (Base‘𝑆)
isghmd.y 𝑌 = (Base‘𝑇)
isghmd.a + = (+g𝑆)
isghmd.b = (+g𝑇)
isghmd.s (𝜑𝑆 ∈ Grp)
isghmd.t (𝜑𝑇 ∈ Grp)
isghmd.f (𝜑𝐹:𝑋𝑌)
isghmd.l ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isghmd (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem isghmd
StepHypRef Expression
1 isghmd.s . 2 (𝜑𝑆 ∈ Grp)
2 isghmd.t . 2 (𝜑𝑇 ∈ Grp)
3 isghmd.f . . 3 (𝜑𝐹:𝑋𝑌)
4 isghmd.l . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
54ralrimivva 2579 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
63, 5jca 306 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
7 isghmd.x . . 3 𝑋 = (Base‘𝑆)
8 isghmd.y . . 3 𝑌 = (Base‘𝑇)
9 isghmd.a . . 3 + = (+g𝑆)
10 isghmd.b . . 3 = (+g𝑇)
117, 8, 9, 10isghm 13449 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
121, 2, 6, 11syl21anbrc 1184 1 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wf 5255  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202   GrpHom cghm 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-ghm 13447
This theorem is referenced by:  ghmmhmb  13460  resghm  13466  conjghm  13482  qusghm  13488  ghmfghm  13532  invghm  13535  ringlghm  13693  ringrghm  13694  isrhmd  13798
  Copyright terms: Public domain W3C validator