| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isghmd | GIF version | ||
| Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
| isghmd.a | ⊢ + = (+g‘𝑆) |
| isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
| isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
| isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 2 | isghmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
| 3 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 4 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 5 | 4 | ralrimivva 2589 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 6 | 3, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
| 7 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 8 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
| 9 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
| 10 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 11 | 7, 8, 9, 10 | isghm 13623 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
| 12 | 1, 2, 6, 11 | syl21anbrc 1185 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 Grpcgrp 13376 GrpHom cghm 13620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-inn 9044 df-ndx 12879 df-slot 12880 df-base 12882 df-ghm 13621 |
| This theorem is referenced by: ghmmhmb 13634 resghm 13640 conjghm 13656 qusghm 13662 ghmfghm 13706 invghm 13709 ringlghm 13867 ringrghm 13868 isrhmd 13972 |
| Copyright terms: Public domain | W3C validator |