ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isghmd GIF version

Theorem isghmd 13632
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
isghmd.x 𝑋 = (Base‘𝑆)
isghmd.y 𝑌 = (Base‘𝑇)
isghmd.a + = (+g𝑆)
isghmd.b = (+g𝑇)
isghmd.s (𝜑𝑆 ∈ Grp)
isghmd.t (𝜑𝑇 ∈ Grp)
isghmd.f (𝜑𝐹:𝑋𝑌)
isghmd.l ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isghmd (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem isghmd
StepHypRef Expression
1 isghmd.s . 2 (𝜑𝑆 ∈ Grp)
2 isghmd.t . 2 (𝜑𝑇 ∈ Grp)
3 isghmd.f . . 3 (𝜑𝐹:𝑋𝑌)
4 isghmd.l . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
54ralrimivva 2589 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
63, 5jca 306 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
7 isghmd.x . . 3 𝑋 = (Base‘𝑆)
8 isghmd.y . . 3 𝑌 = (Base‘𝑇)
9 isghmd.a . . 3 + = (+g𝑆)
10 isghmd.b . . 3 = (+g𝑇)
117, 8, 9, 10isghm 13623 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
121, 2, 6, 11syl21anbrc 1185 1 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wf 5272  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  Grpcgrp 13376   GrpHom cghm 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-inn 9044  df-ndx 12879  df-slot 12880  df-base 12882  df-ghm 13621
This theorem is referenced by:  ghmmhmb  13634  resghm  13640  conjghm  13656  qusghm  13662  ghmfghm  13706  invghm  13709  ringlghm  13867  ringrghm  13868  isrhmd  13972
  Copyright terms: Public domain W3C validator