ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrd GIF version

Theorem lttrd 8145
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
letrd.3 (𝜑𝐶 ∈ ℝ)
lttrd.4 (𝜑𝐴 < 𝐵)
lttrd.5 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
lttrd (𝜑𝐴 < 𝐶)

Proof of Theorem lttrd
StepHypRef Expression
1 lttrd.4 . 2 (𝜑𝐴 < 𝐵)
2 lttrd.5 . 2 (𝜑𝐵 < 𝐶)
3 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letrd.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 lttr 8093 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1249 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 433 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164   class class class wbr 4029  cr 7871   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  exbtwnzlemex  10318  rebtwn2z  10323  qbtwnrelemcalc  10324  expgt1  10648  ltexp2a  10662  expnlbnd2  10736  nn0ltexp2  10780  expcanlem  10786  expcan  10787  cvg1nlemcxze  11126  cvg1nlemcau  11128  cvg1nlemres  11129  recvguniqlem  11138  resqrexlemdecn  11156  resqrexlemcvg  11163  resqrexlemga  11167  qdenre  11346  reccn2ap  11456  georeclim  11656  geoisumr  11661  cvgratz  11675  efcllemp  11801  efgt1  11840  cos12dec  11911  dvdslelemd  11985  pythagtriplem13  12414  fldivp1  12486  4sqlem12  12540  nninfdclemlt  12608  ivthinclemlr  14791  ivthinclemur  14793  hovera  14801  ivthdichlem  14805  limcimolemlt  14818  reeff1olem  14906  sin0pilem1  14916  pilem3  14918  coseq0negpitopi  14971  tangtx  14973  cos02pilt1  14986  rplogcl  15014  cxplt  15050  cxple  15051  ltexp2  15074  cvgcmp2nlemabs  15522  trilpolemlt1  15531  apdifflemf  15536
  Copyright terms: Public domain W3C validator