ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrd GIF version

Theorem lttrd 8268
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
letrd.3 (𝜑𝐶 ∈ ℝ)
lttrd.4 (𝜑𝐴 < 𝐵)
lttrd.5 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
lttrd (𝜑𝐴 < 𝐶)

Proof of Theorem lttrd
StepHypRef Expression
1 lttrd.4 . 2 (𝜑𝐴 < 𝐵)
2 lttrd.5 . 2 (𝜑𝐵 < 𝐶)
3 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letrd.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 lttr 8216 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1271 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 433 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200   class class class wbr 4082  cr 7994   < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-pnf 8179  df-mnf 8180  df-ltxr 8182
This theorem is referenced by:  exbtwnzlemex  10464  rebtwn2z  10469  qbtwnrelemcalc  10470  expgt1  10794  ltexp2a  10808  expnlbnd2  10882  nn0ltexp2  10926  expcanlem  10932  expcan  10933  cvg1nlemcxze  11488  cvg1nlemcau  11490  cvg1nlemres  11491  recvguniqlem  11500  resqrexlemdecn  11518  resqrexlemcvg  11525  resqrexlemga  11529  qdenre  11708  reccn2ap  11819  georeclim  12019  geoisumr  12024  cvgratz  12038  efcllemp  12164  efgt1  12203  cos12dec  12274  dvdslelemd  12349  pythagtriplem13  12794  fldivp1  12866  4sqlem12  12920  nninfdclemlt  13017  ivthinclemlr  15305  ivthinclemur  15307  hovera  15315  ivthdichlem  15319  limcimolemlt  15332  reeff1olem  15439  sin0pilem1  15449  pilem3  15451  coseq0negpitopi  15504  tangtx  15506  cos02pilt1  15519  rplogcl  15547  cxplt  15584  cxple  15585  ltexp2  15609  mersenne  15665  lgsquadlem2  15751  cvgcmp2nlemabs  16359  trilpolemlt1  16368  apdifflemf  16373
  Copyright terms: Public domain W3C validator