ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lttrd GIF version

Theorem lttrd 8032
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
letrd.3 (𝜑𝐶 ∈ ℝ)
lttrd.4 (𝜑𝐴 < 𝐵)
lttrd.5 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
lttrd (𝜑𝐴 < 𝐶)

Proof of Theorem lttrd
StepHypRef Expression
1 lttrd.4 . 2 (𝜑𝐴 < 𝐵)
2 lttrd.5 . 2 (𝜑𝐵 < 𝐶)
3 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letrd.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 lttr 7980 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1233 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 431 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141   class class class wbr 3987  cr 7760   < clt 7941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-pre-lttrn 7875
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-pnf 7943  df-mnf 7944  df-ltxr 7946
This theorem is referenced by:  exbtwnzlemex  10193  rebtwn2z  10198  qbtwnrelemcalc  10199  expgt1  10501  ltexp2a  10515  expnlbnd2  10588  nn0ltexp2  10631  expcanlem  10636  expcan  10637  cvg1nlemcxze  10933  cvg1nlemcau  10935  cvg1nlemres  10936  recvguniqlem  10945  resqrexlemdecn  10963  resqrexlemcvg  10970  resqrexlemga  10974  qdenre  11153  reccn2ap  11263  georeclim  11463  geoisumr  11468  cvgratz  11482  efcllemp  11608  efgt1  11647  cos12dec  11717  dvdslelemd  11790  pythagtriplem13  12217  fldivp1  12287  nninfdclemlt  12393  ivthinclemlr  13368  ivthinclemur  13370  limcimolemlt  13386  reeff1olem  13445  sin0pilem1  13455  pilem3  13457  coseq0negpitopi  13510  tangtx  13512  cos02pilt1  13525  rplogcl  13553  cxplt  13589  cxple  13590  ltexp2  13613  cvgcmp2nlemabs  14024  trilpolemlt1  14033  apdifflemf  14038
  Copyright terms: Public domain W3C validator