![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttrd | GIF version |
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lttr 8093 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: exbtwnzlemex 10318 rebtwn2z 10323 qbtwnrelemcalc 10324 expgt1 10648 ltexp2a 10662 expnlbnd2 10736 nn0ltexp2 10780 expcanlem 10786 expcan 10787 cvg1nlemcxze 11126 cvg1nlemcau 11128 cvg1nlemres 11129 recvguniqlem 11138 resqrexlemdecn 11156 resqrexlemcvg 11163 resqrexlemga 11167 qdenre 11346 reccn2ap 11456 georeclim 11656 geoisumr 11661 cvgratz 11675 efcllemp 11801 efgt1 11840 cos12dec 11911 dvdslelemd 11985 pythagtriplem13 12414 fldivp1 12486 4sqlem12 12540 nninfdclemlt 12608 ivthinclemlr 14791 ivthinclemur 14793 hovera 14801 ivthdichlem 14805 limcimolemlt 14818 reeff1olem 14906 sin0pilem1 14916 pilem3 14918 coseq0negpitopi 14971 tangtx 14973 cos02pilt1 14986 rplogcl 15014 cxplt 15050 cxple 15051 ltexp2 15074 cvgcmp2nlemabs 15522 trilpolemlt1 15531 apdifflemf 15536 |
Copyright terms: Public domain | W3C validator |