| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | GIF version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | lttr 8166 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1250 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-pnf 8129 df-mnf 8130 df-ltxr 8132 |
| This theorem is referenced by: exbtwnzlemex 10414 rebtwn2z 10419 qbtwnrelemcalc 10420 expgt1 10744 ltexp2a 10758 expnlbnd2 10832 nn0ltexp2 10876 expcanlem 10882 expcan 10883 cvg1nlemcxze 11368 cvg1nlemcau 11370 cvg1nlemres 11371 recvguniqlem 11380 resqrexlemdecn 11398 resqrexlemcvg 11405 resqrexlemga 11409 qdenre 11588 reccn2ap 11699 georeclim 11899 geoisumr 11904 cvgratz 11918 efcllemp 12044 efgt1 12083 cos12dec 12154 dvdslelemd 12229 pythagtriplem13 12674 fldivp1 12746 4sqlem12 12800 nninfdclemlt 12897 ivthinclemlr 15184 ivthinclemur 15186 hovera 15194 ivthdichlem 15198 limcimolemlt 15211 reeff1olem 15318 sin0pilem1 15328 pilem3 15330 coseq0negpitopi 15383 tangtx 15385 cos02pilt1 15398 rplogcl 15426 cxplt 15463 cxple 15464 ltexp2 15488 mersenne 15544 lgsquadlem2 15630 cvgcmp2nlemabs 16112 trilpolemlt1 16121 apdifflemf 16126 |
| Copyright terms: Public domain | W3C validator |