| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | GIF version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | lttr 8216 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1271 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 |
| This theorem is referenced by: exbtwnzlemex 10464 rebtwn2z 10469 qbtwnrelemcalc 10470 expgt1 10794 ltexp2a 10808 expnlbnd2 10882 nn0ltexp2 10926 expcanlem 10932 expcan 10933 cvg1nlemcxze 11488 cvg1nlemcau 11490 cvg1nlemres 11491 recvguniqlem 11500 resqrexlemdecn 11518 resqrexlemcvg 11525 resqrexlemga 11529 qdenre 11708 reccn2ap 11819 georeclim 12019 geoisumr 12024 cvgratz 12038 efcllemp 12164 efgt1 12203 cos12dec 12274 dvdslelemd 12349 pythagtriplem13 12794 fldivp1 12866 4sqlem12 12920 nninfdclemlt 13017 ivthinclemlr 15305 ivthinclemur 15307 hovera 15315 ivthdichlem 15319 limcimolemlt 15332 reeff1olem 15439 sin0pilem1 15449 pilem3 15451 coseq0negpitopi 15504 tangtx 15506 cos02pilt1 15519 rplogcl 15547 cxplt 15584 cxple 15585 ltexp2 15609 mersenne 15665 lgsquadlem2 15751 cvgcmp2nlemabs 16359 trilpolemlt1 16368 apdifflemf 16373 |
| Copyright terms: Public domain | W3C validator |