Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttrd | GIF version |
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lttr 7980 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1233 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 431 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3987 ℝcr 7760 < clt 7941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-pre-lttrn 7875 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-xp 4615 df-pnf 7943 df-mnf 7944 df-ltxr 7946 |
This theorem is referenced by: exbtwnzlemex 10193 rebtwn2z 10198 qbtwnrelemcalc 10199 expgt1 10501 ltexp2a 10515 expnlbnd2 10588 nn0ltexp2 10631 expcanlem 10636 expcan 10637 cvg1nlemcxze 10933 cvg1nlemcau 10935 cvg1nlemres 10936 recvguniqlem 10945 resqrexlemdecn 10963 resqrexlemcvg 10970 resqrexlemga 10974 qdenre 11153 reccn2ap 11263 georeclim 11463 geoisumr 11468 cvgratz 11482 efcllemp 11608 efgt1 11647 cos12dec 11717 dvdslelemd 11790 pythagtriplem13 12217 fldivp1 12287 nninfdclemlt 12393 ivthinclemlr 13368 ivthinclemur 13370 limcimolemlt 13386 reeff1olem 13445 sin0pilem1 13455 pilem3 13457 coseq0negpitopi 13510 tangtx 13512 cos02pilt1 13525 rplogcl 13553 cxplt 13589 cxple 13590 ltexp2 13613 cvgcmp2nlemabs 14024 trilpolemlt1 14033 apdifflemf 14038 |
Copyright terms: Public domain | W3C validator |