| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | GIF version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | lttr 8119 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-lttrn 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8082 df-mnf 8083 df-ltxr 8085 |
| This theorem is referenced by: exbtwnzlemex 10358 rebtwn2z 10363 qbtwnrelemcalc 10364 expgt1 10688 ltexp2a 10702 expnlbnd2 10776 nn0ltexp2 10820 expcanlem 10826 expcan 10827 cvg1nlemcxze 11166 cvg1nlemcau 11168 cvg1nlemres 11169 recvguniqlem 11178 resqrexlemdecn 11196 resqrexlemcvg 11203 resqrexlemga 11207 qdenre 11386 reccn2ap 11497 georeclim 11697 geoisumr 11702 cvgratz 11716 efcllemp 11842 efgt1 11881 cos12dec 11952 dvdslelemd 12027 pythagtriplem13 12472 fldivp1 12544 4sqlem12 12598 nninfdclemlt 12695 ivthinclemlr 14981 ivthinclemur 14983 hovera 14991 ivthdichlem 14995 limcimolemlt 15008 reeff1olem 15115 sin0pilem1 15125 pilem3 15127 coseq0negpitopi 15180 tangtx 15182 cos02pilt1 15195 rplogcl 15223 cxplt 15260 cxple 15261 ltexp2 15285 mersenne 15341 lgsquadlem2 15427 cvgcmp2nlemabs 15789 trilpolemlt1 15798 apdifflemf 15803 |
| Copyright terms: Public domain | W3C validator |