![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lttrd | GIF version |
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lttr 8045 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1248 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 class class class wbr 4015 ℝcr 7824 < clt 8006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-pre-lttrn 7939 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-pnf 8008 df-mnf 8009 df-ltxr 8011 |
This theorem is referenced by: exbtwnzlemex 10264 rebtwn2z 10269 qbtwnrelemcalc 10270 expgt1 10572 ltexp2a 10586 expnlbnd2 10660 nn0ltexp2 10703 expcanlem 10709 expcan 10710 cvg1nlemcxze 11005 cvg1nlemcau 11007 cvg1nlemres 11008 recvguniqlem 11017 resqrexlemdecn 11035 resqrexlemcvg 11042 resqrexlemga 11046 qdenre 11225 reccn2ap 11335 georeclim 11535 geoisumr 11540 cvgratz 11554 efcllemp 11680 efgt1 11719 cos12dec 11789 dvdslelemd 11863 pythagtriplem13 12290 fldivp1 12360 nninfdclemlt 12466 ivthinclemlr 14411 ivthinclemur 14413 limcimolemlt 14429 reeff1olem 14488 sin0pilem1 14498 pilem3 14500 coseq0negpitopi 14553 tangtx 14555 cos02pilt1 14568 rplogcl 14596 cxplt 14632 cxple 14633 ltexp2 14656 cvgcmp2nlemabs 15077 trilpolemlt1 15086 apdifflemf 15091 |
Copyright terms: Public domain | W3C validator |