| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lttrd | GIF version | ||
| Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
| Ref | Expression |
|---|---|
| lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
| 3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | lttr 8103 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℝcr 7881 < clt 8064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-pre-lttrn 7996 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8066 df-mnf 8067 df-ltxr 8069 |
| This theorem is referenced by: exbtwnzlemex 10342 rebtwn2z 10347 qbtwnrelemcalc 10348 expgt1 10672 ltexp2a 10686 expnlbnd2 10760 nn0ltexp2 10804 expcanlem 10810 expcan 10811 cvg1nlemcxze 11150 cvg1nlemcau 11152 cvg1nlemres 11153 recvguniqlem 11162 resqrexlemdecn 11180 resqrexlemcvg 11187 resqrexlemga 11191 qdenre 11370 reccn2ap 11481 georeclim 11681 geoisumr 11686 cvgratz 11700 efcllemp 11826 efgt1 11865 cos12dec 11936 dvdslelemd 12011 pythagtriplem13 12456 fldivp1 12528 4sqlem12 12582 nninfdclemlt 12679 ivthinclemlr 14899 ivthinclemur 14901 hovera 14909 ivthdichlem 14913 limcimolemlt 14926 reeff1olem 15033 sin0pilem1 15043 pilem3 15045 coseq0negpitopi 15098 tangtx 15100 cos02pilt1 15113 rplogcl 15141 cxplt 15178 cxple 15179 ltexp2 15203 mersenne 15259 lgsquadlem2 15345 cvgcmp2nlemabs 15705 trilpolemlt1 15714 apdifflemf 15719 |
| Copyright terms: Public domain | W3C validator |