Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lttrd | GIF version |
Description: Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lttrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
lttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | lttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lttr 7993 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1233 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 431 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-lttrn 7888 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: exbtwnzlemex 10206 rebtwn2z 10211 qbtwnrelemcalc 10212 expgt1 10514 ltexp2a 10528 expnlbnd2 10601 nn0ltexp2 10644 expcanlem 10649 expcan 10650 cvg1nlemcxze 10946 cvg1nlemcau 10948 cvg1nlemres 10949 recvguniqlem 10958 resqrexlemdecn 10976 resqrexlemcvg 10983 resqrexlemga 10987 qdenre 11166 reccn2ap 11276 georeclim 11476 geoisumr 11481 cvgratz 11495 efcllemp 11621 efgt1 11660 cos12dec 11730 dvdslelemd 11803 pythagtriplem13 12230 fldivp1 12300 nninfdclemlt 12406 ivthinclemlr 13409 ivthinclemur 13411 limcimolemlt 13427 reeff1olem 13486 sin0pilem1 13496 pilem3 13498 coseq0negpitopi 13551 tangtx 13553 cos02pilt1 13566 rplogcl 13594 cxplt 13630 cxple 13631 ltexp2 13654 cvgcmp2nlemabs 14064 trilpolemlt1 14073 apdifflemf 14078 |
Copyright terms: Public domain | W3C validator |