ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsidlem GIF version

Theorem prdsidlem 13446
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsplusgcl.y 𝑌 = (𝑆Xs𝑅)
prdsplusgcl.b 𝐵 = (Base‘𝑌)
prdsplusgcl.p + = (+g𝑌)
prdsplusgcl.s (𝜑𝑆𝑉)
prdsplusgcl.i (𝜑𝐼𝑊)
prdsplusgcl.r (𝜑𝑅:𝐼⟶Mnd)
prdsidlem.z 0 = (0g𝑅)
Assertion
Ref Expression
prdsidlem (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   0 (𝑥)

Proof of Theorem prdsidlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 prdsidlem.z . . . 4 0 = (0g𝑅)
2 prdsplusgcl.r . . . . . . 7 (𝜑𝑅:𝐼⟶Mnd)
32ffvelcdmda 5743 . . . . . 6 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
43elexd 2793 . . . . 5 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ V)
52feqmptd 5660 . . . . 5 (𝜑𝑅 = (𝑦𝐼 ↦ (𝑅𝑦)))
6 fn0g 13374 . . . . . 6 0g Fn V
7 dffn5im 5652 . . . . . 6 (0g Fn V → 0g = (𝑥 ∈ V ↦ (0g𝑥)))
86, 7mp1i 10 . . . . 5 (𝜑 → 0g = (𝑥 ∈ V ↦ (0g𝑥)))
9 fveq2 5603 . . . . 5 (𝑥 = (𝑅𝑦) → (0g𝑥) = (0g‘(𝑅𝑦)))
104, 5, 8, 9fmptco 5774 . . . 4 (𝜑 → (0g𝑅) = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
111, 10eqtrid 2254 . . 3 (𝜑0 = (𝑦𝐼 ↦ (0g‘(𝑅𝑦))))
12 eqid 2209 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
13 eqid 2209 . . . . . . 7 (0g‘(𝑅𝑦)) = (0g‘(𝑅𝑦))
1412, 13mndidcl 13429 . . . . . 6 ((𝑅𝑦) ∈ Mnd → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
153, 14syl 14 . . . . 5 ((𝜑𝑦𝐼) → (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
1615ralrimiva 2583 . . . 4 (𝜑 → ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦)))
17 prdsplusgcl.y . . . . 5 𝑌 = (𝑆Xs𝑅)
18 prdsplusgcl.b . . . . 5 𝐵 = (Base‘𝑌)
19 prdsplusgcl.s . . . . 5 (𝜑𝑆𝑉)
20 prdsplusgcl.i . . . . 5 (𝜑𝐼𝑊)
212ffnd 5450 . . . . 5 (𝜑𝑅 Fn 𝐼)
2217, 18, 19, 20, 21prdsbasmpt 13279 . . . 4 (𝜑 → ((𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵 ↔ ∀𝑦𝐼 (0g‘(𝑅𝑦)) ∈ (Base‘(𝑅𝑦))))
2316, 22mpbird 167 . . 3 (𝜑 → (𝑦𝐼 ↦ (0g‘(𝑅𝑦))) ∈ 𝐵)
2411, 23eqeltrd 2286 . 2 (𝜑0𝐵)
251fveq1i 5604 . . . . . . . . . 10 ( 0𝑦) = ((0g𝑅)‘𝑦)
26 fvco2 5676 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2721, 26sylan 283 . . . . . . . . . 10 ((𝜑𝑦𝐼) → ((0g𝑅)‘𝑦) = (0g‘(𝑅𝑦)))
2825, 27eqtrid 2254 . . . . . . . . 9 ((𝜑𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
2928adantlr 477 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ( 0𝑦) = (0g‘(𝑅𝑦)))
3029oveq1d 5989 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)))
312adantr 276 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅:𝐼⟶Mnd)
3231ffvelcdmda 5743 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
3319ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑆𝑉)
3420ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝐼𝑊)
3521ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
36 simplr 528 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑥𝐵)
37 simpr 110 . . . . . . . . 9 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → 𝑦𝐼)
3817, 18, 33, 34, 35, 36, 37prdsbasprj 13281 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (𝑥𝑦) ∈ (Base‘(𝑅𝑦)))
39 eqid 2209 . . . . . . . . 9 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
4012, 39, 13mndlid 13434 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4132, 38, 40syl2anc 411 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((0g‘(𝑅𝑦))(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4230, 41eqtrd 2242 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦)) = (𝑥𝑦))
4342mpteq2dva 4153 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
4419adantr 276 . . . . . 6 ((𝜑𝑥𝐵) → 𝑆𝑉)
4520adantr 276 . . . . . 6 ((𝜑𝑥𝐵) → 𝐼𝑊)
4621adantr 276 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Fn 𝐼)
4724adantr 276 . . . . . 6 ((𝜑𝑥𝐵) → 0𝐵)
48 simpr 110 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐵)
49 prdsplusgcl.p . . . . . 6 + = (+g𝑌)
5017, 18, 44, 45, 46, 47, 48, 49prdsplusgval 13282 . . . . 5 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = (𝑦𝐼 ↦ (( 0𝑦)(+g‘(𝑅𝑦))(𝑥𝑦))))
5117, 18, 44, 45, 46, 48prdsbasfn 13280 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 Fn 𝐼)
52 dffn5im 5652 . . . . . 6 (𝑥 Fn 𝐼𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5351, 52syl 14 . . . . 5 ((𝜑𝑥𝐵) → 𝑥 = (𝑦𝐼 ↦ (𝑥𝑦)))
5443, 50, 533eqtr4d 2252 . . . 4 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
5529oveq2d 5990 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))))
5612, 39, 13mndrid 13435 . . . . . . . 8 (((𝑅𝑦) ∈ Mnd ∧ (𝑥𝑦) ∈ (Base‘(𝑅𝑦))) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5732, 38, 56syl2anc 411 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))(0g‘(𝑅𝑦))) = (𝑥𝑦))
5855, 57eqtrd 2242 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐼) → ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦)) = (𝑥𝑦))
5958mpteq2dva 4153 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))) = (𝑦𝐼 ↦ (𝑥𝑦)))
6017, 18, 44, 45, 46, 48, 47, 49prdsplusgval 13282 . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑦𝐼 ↦ ((𝑥𝑦)(+g‘(𝑅𝑦))( 0𝑦))))
6159, 60, 533eqtr4d 2252 . . . 4 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
6254, 61jca 306 . . 3 ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6362ralrimiva 2583 . 2 (𝜑 → ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))
6424, 63jca 306 1 (𝜑 → ( 0𝐵 ∧ ∀𝑥𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  Vcvv 2779  cmpt 4124  ccom 4700   Fn wfn 5289  wf 5290  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  Xscprds 13264  Mndcmnd 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-ixp 6816  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-fz 10173  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-hom 13100  df-cco 13101  df-rest 13240  df-topn 13241  df-0g 13257  df-topgen 13259  df-pt 13260  df-prds 13266  df-mgm 13355  df-sgrp 13401  df-mnd 13416
This theorem is referenced by:  prdsmndd  13447  prds0g  13448
  Copyright terms: Public domain W3C validator