| Step | Hyp | Ref
| Expression |
| 1 | | prdsidlem.z |
. . . 4
⊢ 0 =
(0g ∘ 𝑅) |
| 2 | | prdsplusgcl.r |
. . . . . . 7
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| 3 | 2 | ffvelcdmda 5700 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Mnd) |
| 4 | 3 | elexd 2776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ V) |
| 5 | 2 | feqmptd 5617 |
. . . . 5
⊢ (𝜑 → 𝑅 = (𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))) |
| 6 | | fn0g 13077 |
. . . . . 6
⊢
0g Fn V |
| 7 | | dffn5im 5609 |
. . . . . 6
⊢
(0g Fn V → 0g = (𝑥 ∈ V ↦ (0g‘𝑥))) |
| 8 | 6, 7 | mp1i 10 |
. . . . 5
⊢ (𝜑 → 0g = (𝑥 ∈ V ↦
(0g‘𝑥))) |
| 9 | | fveq2 5561 |
. . . . 5
⊢ (𝑥 = (𝑅‘𝑦) → (0g‘𝑥) = (0g‘(𝑅‘𝑦))) |
| 10 | 4, 5, 8, 9 | fmptco 5731 |
. . . 4
⊢ (𝜑 → (0g ∘
𝑅) = (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦)))) |
| 11 | 1, 10 | eqtrid 2241 |
. . 3
⊢ (𝜑 → 0 = (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦)))) |
| 12 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
| 13 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘(𝑅‘𝑦)) = (0g‘(𝑅‘𝑦)) |
| 14 | 12, 13 | mndidcl 13132 |
. . . . . 6
⊢ ((𝑅‘𝑦) ∈ Mnd →
(0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
| 15 | 3, 14 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
| 16 | 15 | ralrimiva 2570 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
| 17 | | prdsplusgcl.y |
. . . . 5
⊢ 𝑌 = (𝑆Xs𝑅) |
| 18 | | prdsplusgcl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
| 19 | | prdsplusgcl.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 20 | | prdsplusgcl.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 21 | 2 | ffnd 5411 |
. . . . 5
⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 22 | 17, 18, 19, 20, 21 | prdsbasmpt 12982 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦))) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐼 (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦)))) |
| 23 | 16, 22 | mpbird 167 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦))) ∈ 𝐵) |
| 24 | 11, 23 | eqeltrd 2273 |
. 2
⊢ (𝜑 → 0 ∈ 𝐵) |
| 25 | 1 | fveq1i 5562 |
. . . . . . . . . 10
⊢ ( 0 ‘𝑦) = ((0g ∘
𝑅)‘𝑦) |
| 26 | | fvco2 5633 |
. . . . . . . . . . 11
⊢ ((𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑦) = (0g‘(𝑅‘𝑦))) |
| 27 | 21, 26 | sylan 283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑦) = (0g‘(𝑅‘𝑦))) |
| 28 | 25, 27 | eqtrid 2241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ( 0 ‘𝑦) = (0g‘(𝑅‘𝑦))) |
| 29 | 28 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ( 0 ‘𝑦) = (0g‘(𝑅‘𝑦))) |
| 30 | 29 | oveq1d 5940 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦))) |
| 31 | 2 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅:𝐼⟶Mnd) |
| 32 | 31 | ffvelcdmda 5700 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Mnd) |
| 33 | 19 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
| 34 | 20 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
| 35 | 21 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
| 36 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑥 ∈ 𝐵) |
| 37 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
| 38 | 17, 18, 33, 34, 35, 36, 37 | prdsbasprj 12984 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
| 39 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘(𝑅‘𝑦)) = (+g‘(𝑅‘𝑦)) |
| 40 | 12, 39, 13 | mndlid 13137 |
. . . . . . . 8
⊢ (((𝑅‘𝑦) ∈ Mnd ∧ (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
| 41 | 32, 38, 40 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
| 42 | 30, 41 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
| 43 | 42 | mpteq2dva 4124 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐼 ↦ (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
| 44 | 19 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝑉) |
| 45 | 20 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ 𝑊) |
| 46 | 21 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Fn 𝐼) |
| 47 | 24 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ∈ 𝐵) |
| 48 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 49 | | prdsplusgcl.p |
. . . . . 6
⊢ + =
(+g‘𝑌) |
| 50 | 17, 18, 44, 45, 46, 47, 48, 49 | prdsplusgval 12985 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = (𝑦 ∈ 𝐼 ↦ (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)))) |
| 51 | 17, 18, 44, 45, 46, 48 | prdsbasfn 12983 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
| 52 | | dffn5im 5609 |
. . . . . 6
⊢ (𝑥 Fn 𝐼 → 𝑥 = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
| 53 | 51, 52 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
| 54 | 43, 50, 53 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| 55 | 29 | oveq2d 5941 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)) = ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦)))) |
| 56 | 12, 39, 13 | mndrid 13138 |
. . . . . . . 8
⊢ (((𝑅‘𝑦) ∈ Mnd ∧ (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦))) = (𝑥‘𝑦)) |
| 57 | 32, 38, 56 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦))) = (𝑥‘𝑦)) |
| 58 | 55, 57 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)) = (𝑥‘𝑦)) |
| 59 | 58 | mpteq2dva 4124 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
| 60 | 17, 18, 44, 45, 46, 48, 47, 49 | prdsplusgval 12985 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑦 ∈ 𝐼 ↦ ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)))) |
| 61 | 59, 60, 53 | 3eqtr4d 2239 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| 62 | 54, 61 | jca 306 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 63 | 62 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
| 64 | 24, 63 | jca 306 |
1
⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |