ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzz GIF version

Theorem gsumfzz 13067
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
Hypothesis
Ref Expression
gsumz.z 0 = (0g𝐺)
Assertion
Ref Expression
gsumfzz ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
Distinct variable groups:   0 ,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁

Proof of Theorem gsumfzz
Dummy variables 𝑤 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 gsumz.z . . . . 5 0 = (0g𝐺)
3 eqid 2193 . . . . 5 (+g𝐺) = (+g𝐺)
4 simp1 999 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd)
5 simp2 1000 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
6 simp3 1001 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
71, 2mndidcl 13011 . . . . . . . 8 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
84, 7syl 14 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ (Base‘𝐺))
98adantr 276 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ (Base‘𝐺))
109fmpttd 5713 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↦ 0 ):(𝑀...𝑁)⟶(Base‘𝐺))
111, 2, 3, 4, 5, 6, 10gsumfzval 12974 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)))
1211adantr 276 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)))
13 simpr 110 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
1413iftrued 3564 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)) = 0 )
1512, 14eqtrd 2226 . 2 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
1611adantr 276 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)))
17 simpr 110 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
1817iffalsed 3567 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)) = (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁))
195adantr 276 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
206adantr 276 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
215zred 9439 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
226zred 9439 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
2321, 22lenltd 8137 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
2423biimpar 297 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
25 eluz2 9598 . . . . . 6 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
2619, 20, 24, 25syl3anbrc 1183 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
27 eluzfz2 10098 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2826, 27syl 14 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (𝑀...𝑁))
294adantr 276 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝐺 ∈ Mnd)
30 fveqeq2 5563 . . . . . 6 (𝑤 = 𝑀 → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 ))
3130imbi2d 230 . . . . 5 (𝑤 = 𝑀 → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 )))
32 fveqeq2 5563 . . . . . 6 (𝑤 = 𝑦 → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ))
3332imbi2d 230 . . . . 5 (𝑤 = 𝑦 → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 )))
34 fveqeq2 5563 . . . . . 6 (𝑤 = (𝑦 + 1) → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 ))
3534imbi2d 230 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )))
36 fveqeq2 5563 . . . . . 6 (𝑤 = 𝑁 → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 ))
3736imbi2d 230 . . . . 5 (𝑤 = 𝑁 → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 )))
38 eluzel2 9597 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3938adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → 𝑀 ∈ ℤ)
4039adantr 276 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
41 eluzelz 9601 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4241ad2antrr 488 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
4340, 42fzfigd 10502 . . . . . . . . . 10 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → (𝑀...𝑁) ∈ Fin)
4443mptexd 5785 . . . . . . . . 9 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...𝑁) ↦ 0 ) ∈ V)
45 vex 2763 . . . . . . . . 9 𝑢 ∈ V
46 fvexg 5573 . . . . . . . . 9 (((𝑘 ∈ (𝑀...𝑁) ↦ 0 ) ∈ V ∧ 𝑢 ∈ V) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑢) ∈ V)
4744, 45, 46sylancl 413 . . . . . . . 8 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑢) ∈ V)
48 plusgslid 12730 . . . . . . . . . . 11 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4948slotex 12645 . . . . . . . . . 10 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
5049ad2antlr 489 . . . . . . . . 9 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
51 simprr 531 . . . . . . . . 9 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
52 ovexg 5952 . . . . . . . . 9 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
5345, 50, 51, 52mp3an2i 1353 . . . . . . . 8 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
5439, 47, 53seq3-1 10533 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑀))
55 eqid 2193 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) ↦ 0 ) = (𝑘 ∈ (𝑀...𝑁) ↦ 0 )
56 eqidd 2194 . . . . . . . 8 (𝑘 = 𝑀0 = 0 )
57 eluzfz1 10097 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
5857adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → 𝑀 ∈ (𝑀...𝑁))
597adantl 277 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → 0 ∈ (Base‘𝐺))
6055, 56, 58, 59fvmptd3 5651 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑀) = 0 )
6154, 60eqtrd 2226 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 )
6261ex 115 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 ))
63 elfzouz 10217 . . . . . . . . . . 11 (𝑦 ∈ (𝑀..^𝑁) → 𝑦 ∈ (ℤ𝑀))
6463adantr 276 . . . . . . . . . 10 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → 𝑦 ∈ (ℤ𝑀))
65 elfzouz2 10228 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑦))
66 uztrn 9609 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ𝑦) ∧ 𝑦 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
6765, 63, 66syl2anc 411 . . . . . . . . . . 11 (𝑦 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑀))
6867, 47sylanl1 402 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑢) ∈ V)
6967, 53sylanl1 402 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
7064, 68, 69seq3p1 10536 . . . . . . . . 9 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦)(+g𝐺)((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1))))
7170adantr 276 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦)(+g𝐺)((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1))))
72 simpr 110 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 )
73 eqidd 2194 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → 0 = 0 )
74 fzofzp1 10294 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → (𝑦 + 1) ∈ (𝑀...𝑁))
7574adantr 276 . . . . . . . . . . 11 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → (𝑦 + 1) ∈ (𝑀...𝑁))
767adantl 277 . . . . . . . . . . 11 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → 0 ∈ (Base‘𝐺))
7755, 73, 75, 76fvmptd3 5651 . . . . . . . . . 10 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1)) = 0 )
7877adantr 276 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1)) = 0 )
7972, 78oveq12d 5936 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦)(+g𝐺)((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1))) = ( 0 (+g𝐺) 0 ))
801, 3, 2mndlid 13016 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
817, 80mpdan 421 . . . . . . . . 9 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
8281ad2antlr 489 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → ( 0 (+g𝐺) 0 ) = 0 )
8371, 79, 823eqtrd 2230 . . . . . . 7 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )
8483exp31 364 . . . . . 6 (𝑦 ∈ (𝑀..^𝑁) → (𝐺 ∈ Mnd → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )))
8584a2d 26 . . . . 5 (𝑦 ∈ (𝑀..^𝑁) → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )))
8631, 33, 35, 37, 62, 85fzind2 10306 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 ))
8728, 29, 86sylc 62 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 )
8816, 18, 873eqtrd 2230 . 2 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
89 zdclt 9394 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
906, 5, 89syl2anc 411 . . 3 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝑀)
91 exmiddc 837 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
9290, 91syl 14 . 2 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
9315, 88, 92mpjaodan 799 1 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  ifcif 3557   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  Fincfn 6794  1c1 7873   + caddc 7875   < clt 8054  cle 8055  cz 9317  cuz 9592  ...cfz 10074  ..^cfzo 10208  seqcseq 10518  Basecbs 12618  +gcplusg 12695  0gc0g 12867   Σg cgsu 12868  Mndcmnd 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-mgm 12939  df-sgrp 12985  df-mnd 12998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator