ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzz GIF version

Theorem gsumfzz 13514
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 15-Aug-2025.)
Hypothesis
Ref Expression
gsumz.z 0 = (0g𝐺)
Assertion
Ref Expression
gsumfzz ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
Distinct variable groups:   0 ,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁

Proof of Theorem gsumfzz
Dummy variables 𝑤 𝑢 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 gsumz.z . . . . 5 0 = (0g𝐺)
3 eqid 2229 . . . . 5 (+g𝐺) = (+g𝐺)
4 simp1 1021 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Mnd)
5 simp2 1022 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
6 simp3 1023 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
71, 2mndidcl 13449 . . . . . . . 8 (𝐺 ∈ Mnd → 0 ∈ (Base‘𝐺))
84, 7syl 14 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ (Base‘𝐺))
98adantr 276 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ∈ (Base‘𝐺))
109fmpttd 5783 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↦ 0 ):(𝑀...𝑁)⟶(Base‘𝐺))
111, 2, 3, 4, 5, 6, 10gsumfzval 13410 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)))
1211adantr 276 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)))
13 simpr 110 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
1413iftrued 3609 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)) = 0 )
1512, 14eqtrd 2262 . 2 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
1611adantr 276 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)))
17 simpr 110 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
1817iffalsed 3612 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, 0 , (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁)) = (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁))
195adantr 276 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
206adantr 276 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
215zred 9557 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
226zred 9557 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
2321, 22lenltd 8252 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
2423biimpar 297 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
25 eluz2 9716 . . . . . 6 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
2619, 20, 24, 25syl3anbrc 1205 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
27 eluzfz2 10216 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2826, 27syl 14 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (𝑀...𝑁))
294adantr 276 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → 𝐺 ∈ Mnd)
30 fveqeq2 5632 . . . . . 6 (𝑤 = 𝑀 → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 ))
3130imbi2d 230 . . . . 5 (𝑤 = 𝑀 → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 )))
32 fveqeq2 5632 . . . . . 6 (𝑤 = 𝑦 → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ))
3332imbi2d 230 . . . . 5 (𝑤 = 𝑦 → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 )))
34 fveqeq2 5632 . . . . . 6 (𝑤 = (𝑦 + 1) → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 ))
3534imbi2d 230 . . . . 5 (𝑤 = (𝑦 + 1) → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )))
36 fveqeq2 5632 . . . . . 6 (𝑤 = 𝑁 → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ↔ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 ))
3736imbi2d 230 . . . . 5 (𝑤 = 𝑁 → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑤) = 0 ) ↔ (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 )))
38 eluzel2 9715 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3938adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → 𝑀 ∈ ℤ)
4039adantr 276 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
41 eluzelz 9719 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4241ad2antrr 488 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
4340, 42fzfigd 10640 . . . . . . . . . 10 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → (𝑀...𝑁) ∈ Fin)
4443mptexd 5859 . . . . . . . . 9 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...𝑁) ↦ 0 ) ∈ V)
45 vex 2802 . . . . . . . . 9 𝑢 ∈ V
46 fvexg 5642 . . . . . . . . 9 (((𝑘 ∈ (𝑀...𝑁) ↦ 0 ) ∈ V ∧ 𝑢 ∈ V) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑢) ∈ V)
4744, 45, 46sylancl 413 . . . . . . . 8 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑢) ∈ V)
48 plusgslid 13131 . . . . . . . . . . 11 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4948slotex 13045 . . . . . . . . . 10 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
5049ad2antlr 489 . . . . . . . . 9 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (+g𝐺) ∈ V)
51 simprr 531 . . . . . . . . 9 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → 𝑣 ∈ V)
52 ovexg 6028 . . . . . . . . 9 ((𝑢 ∈ V ∧ (+g𝐺) ∈ V ∧ 𝑣 ∈ V) → (𝑢(+g𝐺)𝑣) ∈ V)
5345, 50, 51, 52mp3an2i 1376 . . . . . . . 8 (((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
5439, 47, 53seq3-1 10671 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑀))
55 eqid 2229 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) ↦ 0 ) = (𝑘 ∈ (𝑀...𝑁) ↦ 0 )
56 eqidd 2230 . . . . . . . 8 (𝑘 = 𝑀0 = 0 )
57 eluzfz1 10215 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
5857adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → 𝑀 ∈ (𝑀...𝑁))
597adantl 277 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → 0 ∈ (Base‘𝐺))
6055, 56, 58, 59fvmptd3 5721 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑀) = 0 )
6154, 60eqtrd 2262 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐺 ∈ Mnd) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 )
6261ex 115 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑀) = 0 ))
63 elfzouz 10335 . . . . . . . . . . 11 (𝑦 ∈ (𝑀..^𝑁) → 𝑦 ∈ (ℤ𝑀))
6463adantr 276 . . . . . . . . . 10 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → 𝑦 ∈ (ℤ𝑀))
65 elfzouz2 10346 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑦))
66 uztrn 9727 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ𝑦) ∧ 𝑦 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
6765, 63, 66syl2anc 411 . . . . . . . . . . 11 (𝑦 ∈ (𝑀..^𝑁) → 𝑁 ∈ (ℤ𝑀))
6867, 47sylanl1 402 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ 𝑢 ∈ (ℤ𝑀)) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘𝑢) ∈ V)
6967, 53sylanl1 402 . . . . . . . . . 10 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) → (𝑢(+g𝐺)𝑣) ∈ V)
7064, 68, 69seq3p1 10674 . . . . . . . . 9 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦)(+g𝐺)((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1))))
7170adantr 276 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦)(+g𝐺)((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1))))
72 simpr 110 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 )
73 eqidd 2230 . . . . . . . . . . 11 (𝑘 = (𝑦 + 1) → 0 = 0 )
74 fzofzp1 10420 . . . . . . . . . . . 12 (𝑦 ∈ (𝑀..^𝑁) → (𝑦 + 1) ∈ (𝑀...𝑁))
7574adantr 276 . . . . . . . . . . 11 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → (𝑦 + 1) ∈ (𝑀...𝑁))
767adantl 277 . . . . . . . . . . 11 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → 0 ∈ (Base‘𝐺))
7755, 73, 75, 76fvmptd3 5721 . . . . . . . . . 10 ((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1)) = 0 )
7877adantr 276 . . . . . . . . 9 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → ((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1)) = 0 )
7972, 78oveq12d 6012 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦)(+g𝐺)((𝑘 ∈ (𝑀...𝑁) ↦ 0 )‘(𝑦 + 1))) = ( 0 (+g𝐺) 0 ))
801, 3, 2mndlid 13454 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
817, 80mpdan 421 . . . . . . . . 9 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
8281ad2antlr 489 . . . . . . . 8 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → ( 0 (+g𝐺) 0 ) = 0 )
8371, 79, 823eqtrd 2266 . . . . . . 7 (((𝑦 ∈ (𝑀..^𝑁) ∧ 𝐺 ∈ Mnd) ∧ (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )
8483exp31 364 . . . . . 6 (𝑦 ∈ (𝑀..^𝑁) → (𝐺 ∈ Mnd → ((seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )))
8584a2d 26 . . . . 5 (𝑦 ∈ (𝑀..^𝑁) → ((𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑦) = 0 ) → (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘(𝑦 + 1)) = 0 )))
8631, 33, 35, 37, 62, 85fzind2 10432 . . . 4 (𝑁 ∈ (𝑀...𝑁) → (𝐺 ∈ Mnd → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 ))
8728, 29, 86sylc 62 . . 3 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑁) ↦ 0 ))‘𝑁) = 0 )
8816, 18, 873eqtrd 2266 . 2 (((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
89 zdclt 9512 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
906, 5, 89syl2anc 411 . . 3 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 < 𝑀)
91 exmiddc 841 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
9290, 91syl 14 . 2 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
9315, 88, 92mpjaodan 803 1 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 0 )) = 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  ifcif 3602   class class class wbr 4082  cmpt 4144  cfv 5314  (class class class)co 5994  Fincfn 6877  1c1 7988   + caddc 7990   < clt 8169  cle 8170  cz 9434  cuz 9710  ...cfz 10192  ..^cfzo 10326  seqcseq 10656  Basecbs 13018  +gcplusg 13096  0gc0g 13275   Σg cgsu 13276  Mndcmnd 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-igsum 13278  df-mgm 13375  df-sgrp 13421  df-mnd 13436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator