| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
| 2 | 1 | iftrued 3569 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)) = (0g‘𝐺)) |
| 3 | | gsummptfidmadd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | eqid 2196 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 5 | | gsummptfidmadd.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 6 | | gsummptfidmadd.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 7 | | gsumfzmptfidmadd.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 8 | | gsumfzmptfidmadd.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 9 | 6 | cmnmndd 13448 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 10 | 9 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐺 ∈ Mnd) |
| 11 | | gsumfzmptfidmadd.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐶 ∈ 𝐵) |
| 12 | | gsumfzmptfidmadd.d |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝐷 ∈ 𝐵) |
| 13 | 3, 5 | mndcl 13074 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 + 𝐷) ∈ 𝐵) |
| 14 | 10, 11, 12, 13 | syl3anc 1249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐶 + 𝐷) ∈ 𝐵) |
| 15 | 14 | fmpttd 5718 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)):(𝑀...𝑁)⟶𝐵) |
| 16 | 3, 4, 5, 6, 7, 8, 15 | gsumfzval 13044 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁))) |
| 17 | 16 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁))) |
| 18 | | gsumfzmptfidmadd.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶) |
| 19 | 11, 18 | fmptd 5717 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 20 | 3, 4, 5, 6, 7, 8, 19 | gsumfzval 13044 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐹)‘𝑁))) |
| 21 | 20 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐹)‘𝑁))) |
| 22 | 1 | iftrued 3569 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐹)‘𝑁)) = (0g‘𝐺)) |
| 23 | 21, 22 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (0g‘𝐺)) |
| 24 | | gsumfzmptfidmadd.h |
. . . . . . . . 9
⊢ 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷) |
| 25 | 12, 24 | fmptd 5717 |
. . . . . . . 8
⊢ (𝜑 → 𝐻:(𝑀...𝑁)⟶𝐵) |
| 26 | 3, 4, 5, 6, 7, 8, 25 | gsumfzval 13044 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg 𝐻) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐻)‘𝑁))) |
| 27 | 26 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐻) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐻)‘𝑁))) |
| 28 | 1 | iftrued 3569 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐻)‘𝑁)) = (0g‘𝐺)) |
| 29 | 27, 28 | eqtrd 2229 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐻) = (0g‘𝐺)) |
| 30 | 23, 29 | oveq12d 5941 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((0g‘𝐺) + (0g‘𝐺))) |
| 31 | 3, 4 | mndidcl 13081 |
. . . . . 6
⊢ (𝐺 ∈ Mnd →
(0g‘𝐺)
∈ 𝐵) |
| 32 | 3, 5, 4 | mndlid 13086 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧
(0g‘𝐺)
∈ 𝐵) →
((0g‘𝐺)
+
(0g‘𝐺)) =
(0g‘𝐺)) |
| 33 | 9, 31, 32 | syl2anc2 412 |
. . . . 5
⊢ (𝜑 →
((0g‘𝐺)
+
(0g‘𝐺)) =
(0g‘𝐺)) |
| 34 | 33 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → ((0g‘𝐺) + (0g‘𝐺)) = (0g‘𝐺)) |
| 35 | 30, 34 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = (0g‘𝐺)) |
| 36 | 2, 17, 35 | 3eqtr4d 2239 |
. 2
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 37 | 9 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
| 38 | | simprl 529 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝑝 ∈ 𝐵) |
| 39 | | simprr 531 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝑞 ∈ 𝐵) |
| 40 | 3, 5 | mndcl 13074 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 + 𝑞) ∈ 𝐵) |
| 41 | 37, 38, 39, 40 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 + 𝑞) ∈ 𝐵) |
| 42 | 6 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝐺 ∈ CMnd) |
| 43 | 3, 5 | cmncom 13442 |
. . . . 5
⊢ ((𝐺 ∈ CMnd ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (𝑝 + 𝑞) = (𝑞 + 𝑝)) |
| 44 | 42, 38, 39, 43 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 + 𝑞) = (𝑞 + 𝑝)) |
| 45 | 9 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
| 46 | 3, 5 | mndass 13075 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑝 + 𝑞) + 𝑟) = (𝑝 + (𝑞 + 𝑟))) |
| 47 | 45, 46 | sylancom 420 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑝 + 𝑞) + 𝑟) = (𝑝 + (𝑞 + 𝑟))) |
| 48 | 7 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
| 49 | 8 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 50 | 48 | zred 9450 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
| 51 | 49 | zred 9450 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
| 52 | | simpr 110 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) |
| 53 | 50, 51, 52 | nltled 8149 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
| 54 | | eluz2 9609 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 55 | 48, 49, 53, 54 | syl3anbrc 1183 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 56 | 19 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹:(𝑀...𝑁)⟶𝐵) |
| 57 | 56 | ffvelcdmda 5698 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝐵) |
| 58 | 25 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻:(𝑀...𝑁)⟶𝐵) |
| 59 | 58 | ffvelcdmda 5698 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) ∈ 𝐵) |
| 60 | 7, 8 | fzfigd 10525 |
. . . . . . . 8
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 61 | 18 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)) |
| 62 | 24 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)) |
| 63 | 60, 11, 12, 61, 62 | offval2 6152 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐻) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) |
| 64 | 63 | fveq1d 5561 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐻)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))‘𝑘)) |
| 65 | 64 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹 ∘𝑓 + 𝐻)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))‘𝑘)) |
| 66 | 19 | ffnd 5409 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Fn (𝑀...𝑁)) |
| 67 | 25 | ffnd 5409 |
. . . . . . 7
⊢ (𝜑 → 𝐻 Fn (𝑀...𝑁)) |
| 68 | | inidm 3373 |
. . . . . . 7
⊢ ((𝑀...𝑁) ∩ (𝑀...𝑁)) = (𝑀...𝑁) |
| 69 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 70 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) = (𝐻‘𝑘)) |
| 71 | 9 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐺 ∈ Mnd) |
| 72 | 19 | ffvelcdmda 5698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ 𝐵) |
| 73 | 25 | ffvelcdmda 5698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻‘𝑘) ∈ 𝐵) |
| 74 | 3, 5 | mndcl 13074 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝐹‘𝑘) ∈ 𝐵 ∧ (𝐻‘𝑘) ∈ 𝐵) → ((𝐹‘𝑘) + (𝐻‘𝑘)) ∈ 𝐵) |
| 75 | 71, 72, 73, 74 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹‘𝑘) + (𝐻‘𝑘)) ∈ 𝐵) |
| 76 | 66, 67, 60, 60, 68, 69, 70, 75 | ofvalg 6146 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹 ∘𝑓 + 𝐻)‘𝑘) = ((𝐹‘𝑘) + (𝐻‘𝑘))) |
| 77 | 76 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹 ∘𝑓 + 𝐻)‘𝑘) = ((𝐹‘𝑘) + (𝐻‘𝑘))) |
| 78 | 65, 77 | eqtr3d 2231 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))‘𝑘) = ((𝐹‘𝑘) + (𝐻‘𝑘))) |
| 79 | | plusgslid 12800 |
. . . . . . . 8
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 80 | 79 | slotex 12715 |
. . . . . . 7
⊢ (𝐺 ∈ CMnd →
(+g‘𝐺)
∈ V) |
| 81 | 6, 80 | syl 14 |
. . . . . 6
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 82 | 5, 81 | eqeltrid 2283 |
. . . . 5
⊢ (𝜑 → + ∈ V) |
| 83 | 82 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → + ∈ V) |
| 84 | 19, 60 | fexd 5793 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
| 85 | 84 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V) |
| 86 | 25, 60 | fexd 5793 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ V) |
| 87 | 86 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻 ∈ V) |
| 88 | 15, 60 | fexd 5793 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)) ∈ V) |
| 89 | 88 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)) ∈ V) |
| 90 | 41, 44, 47, 55, 57, 59, 78, 83, 85, 87, 89 | seqcaoprg 10590 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐻)‘𝑁))) |
| 91 | 16 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁))) |
| 92 | 52 | iffalsed 3572 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)) |
| 93 | 91, 92 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)) |
| 94 | 20 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐹)‘𝑁))) |
| 95 | 52 | iffalsed 3572 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 96 | 94, 95 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 97 | 26 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐻) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐻)‘𝑁))) |
| 98 | 52 | iffalsed 3572 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀( + , 𝐻)‘𝑁)) = (seq𝑀( + , 𝐻)‘𝑁)) |
| 99 | 97, 98 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐻) = (seq𝑀( + , 𝐻)‘𝑁)) |
| 100 | 96, 99 | oveq12d 5941 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐻)‘𝑁))) |
| 101 | 90, 93, 100 | 3eqtr4d 2239 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 102 | | zdclt 9405 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 <
𝑀) |
| 103 | 8, 7, 102 | syl2anc 411 |
. . 3
⊢ (𝜑 → DECID 𝑁 < 𝑀) |
| 104 | | exmiddc 837 |
. . 3
⊢
(DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 105 | 103, 104 | syl 14 |
. 2
⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 106 | 36, 101, 105 | mpjaodan 799 |
1
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |