ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzmptfidmadd GIF version

Theorem gsumfzmptfidmadd 13409
Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
Hypotheses
Ref Expression
gsummptfidmadd.b 𝐵 = (Base‘𝐺)
gsummptfidmadd.p + = (+g𝐺)
gsummptfidmadd.g (𝜑𝐺 ∈ CMnd)
gsumfzmptfidmadd.m (𝜑𝑀 ∈ ℤ)
gsumfzmptfidmadd.n (𝜑𝑁 ∈ ℤ)
gsumfzmptfidmadd.c ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)
gsumfzmptfidmadd.d ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)
gsumfzmptfidmadd.f 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
gsumfzmptfidmadd.h 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)
Assertion
Ref Expression
gsumfzmptfidmadd (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥, +   𝑥,𝑀   𝑥,𝑁
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem gsumfzmptfidmadd
Dummy variables 𝑘 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑𝑁 < 𝑀) → 𝑁 < 𝑀)
21iftrued 3564 . . 3 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)) = (0g𝐺))
3 gsummptfidmadd.b . . . . 5 𝐵 = (Base‘𝐺)
4 eqid 2193 . . . . 5 (0g𝐺) = (0g𝐺)
5 gsummptfidmadd.p . . . . 5 + = (+g𝐺)
6 gsummptfidmadd.g . . . . 5 (𝜑𝐺 ∈ CMnd)
7 gsumfzmptfidmadd.m . . . . 5 (𝜑𝑀 ∈ ℤ)
8 gsumfzmptfidmadd.n . . . . 5 (𝜑𝑁 ∈ ℤ)
96cmnmndd 13378 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
109adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐺 ∈ Mnd)
11 gsumfzmptfidmadd.c . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐶𝐵)
12 gsumfzmptfidmadd.d . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐷𝐵)
133, 5mndcl 13004 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐶𝐵𝐷𝐵) → (𝐶 + 𝐷) ∈ 𝐵)
1410, 11, 12, 13syl3anc 1249 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐶 + 𝐷) ∈ 𝐵)
1514fmpttd 5713 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)):(𝑀...𝑁)⟶𝐵)
163, 4, 5, 6, 7, 8, 15gsumfzval 12974 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)))
1716adantr 276 . . 3 ((𝜑𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)))
18 gsumfzmptfidmadd.f . . . . . . . . 9 𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶)
1911, 18fmptd 5712 . . . . . . . 8 (𝜑𝐹:(𝑀...𝑁)⟶𝐵)
203, 4, 5, 6, 7, 8, 19gsumfzval 12974 . . . . . . 7 (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐹)‘𝑁)))
2120adantr 276 . . . . . 6 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐹)‘𝑁)))
221iftrued 3564 . . . . . 6 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐹)‘𝑁)) = (0g𝐺))
2321, 22eqtrd 2226 . . . . 5 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (0g𝐺))
24 gsumfzmptfidmadd.h . . . . . . . . 9 𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷)
2512, 24fmptd 5712 . . . . . . . 8 (𝜑𝐻:(𝑀...𝑁)⟶𝐵)
263, 4, 5, 6, 7, 8, 25gsumfzval 12974 . . . . . . 7 (𝜑 → (𝐺 Σg 𝐻) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐻)‘𝑁)))
2726adantr 276 . . . . . 6 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐻) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐻)‘𝑁)))
281iftrued 3564 . . . . . 6 ((𝜑𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐻)‘𝑁)) = (0g𝐺))
2927, 28eqtrd 2226 . . . . 5 ((𝜑𝑁 < 𝑀) → (𝐺 Σg 𝐻) = (0g𝐺))
3023, 29oveq12d 5936 . . . 4 ((𝜑𝑁 < 𝑀) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((0g𝐺) + (0g𝐺)))
313, 4mndidcl 13011 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
323, 5, 4mndlid 13016 . . . . . 6 ((𝐺 ∈ Mnd ∧ (0g𝐺) ∈ 𝐵) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
339, 31, 32syl2anc2 412 . . . . 5 (𝜑 → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
3433adantr 276 . . . 4 ((𝜑𝑁 < 𝑀) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
3530, 34eqtrd 2226 . . 3 ((𝜑𝑁 < 𝑀) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = (0g𝐺))
362, 17, 353eqtr4d 2236 . 2 ((𝜑𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
379ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵)) → 𝐺 ∈ Mnd)
38 simprl 529 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵)) → 𝑝𝐵)
39 simprr 531 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵)) → 𝑞𝐵)
403, 5mndcl 13004 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑝𝐵𝑞𝐵) → (𝑝 + 𝑞) ∈ 𝐵)
4137, 38, 39, 40syl3anc 1249 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 + 𝑞) ∈ 𝐵)
426ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵)) → 𝐺 ∈ CMnd)
433, 5cmncom 13372 . . . . 5 ((𝐺 ∈ CMnd ∧ 𝑝𝐵𝑞𝐵) → (𝑝 + 𝑞) = (𝑞 + 𝑝))
4442, 38, 39, 43syl3anc 1249 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵)) → (𝑝 + 𝑞) = (𝑞 + 𝑝))
459ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵𝑟𝐵)) → 𝐺 ∈ Mnd)
463, 5mndass 13005 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑝𝐵𝑞𝐵𝑟𝐵)) → ((𝑝 + 𝑞) + 𝑟) = (𝑝 + (𝑞 + 𝑟)))
4745, 46sylancom 420 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑝𝐵𝑞𝐵𝑟𝐵)) → ((𝑝 + 𝑞) + 𝑟) = (𝑝 + (𝑞 + 𝑟)))
487adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ)
498adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ)
5048zred 9439 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
5149zred 9439 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
52 simpr 110 . . . . . 6 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀)
5350, 51, 52nltled 8140 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀𝑁)
54 eluz2 9598 . . . . 5 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
5548, 49, 53, 54syl3anbrc 1183 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ𝑀))
5619adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹:(𝑀...𝑁)⟶𝐵)
5756ffvelcdmda 5693 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝐵)
5825adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻:(𝑀...𝑁)⟶𝐵)
5958ffvelcdmda 5693 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) ∈ 𝐵)
607, 8fzfigd 10502 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ∈ Fin)
6118a1i 9 . . . . . . . 8 (𝜑𝐹 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐶))
6224a1i 9 . . . . . . . 8 (𝜑𝐻 = (𝑥 ∈ (𝑀...𝑁) ↦ 𝐷))
6360, 11, 12, 61, 62offval2 6146 . . . . . . 7 (𝜑 → (𝐹𝑓 + 𝐻) = (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))
6463fveq1d 5556 . . . . . 6 (𝜑 → ((𝐹𝑓 + 𝐻)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))‘𝑘))
6564ad2antrr 488 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑓 + 𝐻)‘𝑘) = ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))‘𝑘))
6619ffnd 5404 . . . . . . 7 (𝜑𝐹 Fn (𝑀...𝑁))
6725ffnd 5404 . . . . . . 7 (𝜑𝐻 Fn (𝑀...𝑁))
68 inidm 3368 . . . . . . 7 ((𝑀...𝑁) ∩ (𝑀...𝑁)) = (𝑀...𝑁)
69 eqidd 2194 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐹𝑘))
70 eqidd 2194 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = (𝐻𝑘))
719adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐺 ∈ Mnd)
7219ffvelcdmda 5693 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝐵)
7325ffvelcdmda 5693 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) ∈ 𝐵)
743, 5mndcl 13004 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝐹𝑘) ∈ 𝐵 ∧ (𝐻𝑘) ∈ 𝐵) → ((𝐹𝑘) + (𝐻𝑘)) ∈ 𝐵)
7571, 72, 73, 74syl3anc 1249 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) + (𝐻𝑘)) ∈ 𝐵)
7666, 67, 60, 60, 68, 69, 70, 75ofvalg 6140 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑓 + 𝐻)‘𝑘) = ((𝐹𝑘) + (𝐻𝑘)))
7776adantlr 477 . . . . 5 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑓 + 𝐻)‘𝑘) = ((𝐹𝑘) + (𝐻𝑘)))
7865, 77eqtr3d 2228 . . . 4 (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))‘𝑘) = ((𝐹𝑘) + (𝐻𝑘)))
79 plusgslid 12730 . . . . . . . 8 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
8079slotex 12645 . . . . . . 7 (𝐺 ∈ CMnd → (+g𝐺) ∈ V)
816, 80syl 14 . . . . . 6 (𝜑 → (+g𝐺) ∈ V)
825, 81eqeltrid 2280 . . . . 5 (𝜑+ ∈ V)
8382adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → + ∈ V)
8419, 60fexd 5788 . . . . 5 (𝜑𝐹 ∈ V)
8584adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V)
8625, 60fexd 5788 . . . . 5 (𝜑𝐻 ∈ V)
8786adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐻 ∈ V)
8815, 60fexd 5788 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)) ∈ V)
8988adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)) ∈ V)
9041, 44, 47, 55, 57, 59, 78, 83, 85, 87, 89seqcaoprg 10567 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐻)‘𝑁)))
9116adantr 276 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)))
9252iffalsed 3567 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁)) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁))
9391, 92eqtrd 2226 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = (seq𝑀( + , (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷)))‘𝑁))
9420adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐹)‘𝑁)))
9552iffalsed 3567 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
9694, 95eqtrd 2226 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
9726adantr 276 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐻) = if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐻)‘𝑁)))
9852iffalsed 3567 . . . . 5 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g𝐺), (seq𝑀( + , 𝐻)‘𝑁)) = (seq𝑀( + , 𝐻)‘𝑁))
9997, 98eqtrd 2226 . . . 4 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐻) = (seq𝑀( + , 𝐻)‘𝑁))
10096, 99oveq12d 5936 . . 3 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq𝑀( + , 𝐻)‘𝑁)))
10190, 93, 1003eqtr4d 2236 . 2 ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
102 zdclt 9394 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝑁 < 𝑀)
1038, 7, 102syl2anc 411 . . 3 (𝜑DECID 𝑁 < 𝑀)
104 exmiddc 837 . . 3 (DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
105103, 104syl 14 . 2 (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀))
10636, 101, 105mpjaodan 799 1 (𝜑 → (𝐺 Σg (𝑥 ∈ (𝑀...𝑁) ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  ifcif 3557   class class class wbr 4029  cmpt 4090  wf 5250  cfv 5254  (class class class)co 5918  𝑓 cof 6128  Fincfn 6794   < clt 8054  cle 8055  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  Basecbs 12618  +gcplusg 12695  0gc0g 12867   Σg cgsu 12868  Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-cmn 13356
This theorem is referenced by:  gsumfzmptfidmadd2  13410
  Copyright terms: Public domain W3C validator