![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemcl | GIF version |
Description: Lemma for trilpo 15533. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
Ref | Expression |
---|---|
trilpolemgt1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
trilpolemgt1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
Ref | Expression |
---|---|
trilpolemcl | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trilpolemgt1.a | . 2 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
2 | nnuz 9628 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1zzd 9344 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
4 | eqid 2193 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) | |
5 | oveq2 5926 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) | |
6 | 5 | oveq2d 5934 | . . . . 5 ⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
7 | fveq2 5554 | . . . . 5 ⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) | |
8 | 6, 7 | oveq12d 5936 | . . . 4 ⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
10 | 2rp 9724 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
11 | 10 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+) |
12 | nnz 9336 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ → 𝑖 ∈ ℤ) | |
13 | 12 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
14 | 11, 13 | rpexpcld 10768 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+) |
15 | 14 | rprecred 9774 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
16 | 0re 8019 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
17 | eleq1 2256 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 0 → ((𝐹‘𝑖) ∈ ℝ ↔ 0 ∈ ℝ)) | |
18 | 16, 17 | mpbiri 168 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ) |
19 | 18 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ)) |
20 | 1re 8018 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
21 | eleq1 2256 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 1 → ((𝐹‘𝑖) ∈ ℝ ↔ 1 ∈ ℝ)) | |
22 | 20, 21 | mpbiri 168 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ) |
23 | 22 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ)) |
24 | trilpolemgt1.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
25 | 24 | ffvelcdmda 5693 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) |
26 | elpri 3641 | . . . . . . 7 ⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | |
27 | 25, 26 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
28 | 19, 23, 27 | mpjaod 719 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
29 | 15, 28 | remulcld 8050 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
30 | 4, 8, 9, 29 | fvmptd3 5651 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
31 | 24, 4 | trilpolemclim 15526 | . . 3 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) |
32 | 2, 3, 30, 29, 31 | isumrecl 11572 | . 2 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
33 | 1, 32 | eqeltrid 2280 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 {cpr 3619 ↦ cmpt 4090 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 · cmul 7877 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ℝ+crp 9719 ↑cexp 10609 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-ico 9960 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 |
This theorem is referenced by: trilpolemgt1 15529 trilpolemeq1 15530 trilpolemlt1 15531 trilpo 15533 redcwlpo 15545 nconstwlpolem 15555 neapmkvlem 15557 neapmkv 15558 |
Copyright terms: Public domain | W3C validator |