| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemcl | GIF version | ||
| Description: Lemma for trilpo 15915. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| Ref | Expression |
|---|---|
| trilpolemgt1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
| trilpolemgt1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
| Ref | Expression |
|---|---|
| trilpolemcl | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trilpolemgt1.a | . 2 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
| 2 | nnuz 9683 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | 1zzd 9398 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 4 | eqid 2204 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) | |
| 5 | oveq2 5951 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) | |
| 6 | 5 | oveq2d 5959 | . . . . 5 ⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
| 7 | fveq2 5575 | . . . . 5 ⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) | |
| 8 | 6, 7 | oveq12d 5961 | . . . 4 ⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
| 9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 10 | 2rp 9779 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
| 11 | 10 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+) |
| 12 | nnz 9390 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ → 𝑖 ∈ ℤ) | |
| 13 | 12 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
| 14 | 11, 13 | rpexpcld 10840 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+) |
| 15 | 14 | rprecred 9829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
| 16 | 0re 8071 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 17 | eleq1 2267 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 0 → ((𝐹‘𝑖) ∈ ℝ ↔ 0 ∈ ℝ)) | |
| 18 | 16, 17 | mpbiri 168 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ) |
| 19 | 18 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ)) |
| 20 | 1re 8070 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 21 | eleq1 2267 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 1 → ((𝐹‘𝑖) ∈ ℝ ↔ 1 ∈ ℝ)) | |
| 22 | 20, 21 | mpbiri 168 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ) |
| 23 | 22 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ)) |
| 24 | trilpolemgt1.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
| 25 | 24 | ffvelcdmda 5714 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) |
| 26 | elpri 3655 | . . . . . . 7 ⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | |
| 27 | 25, 26 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
| 28 | 19, 23, 27 | mpjaod 719 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
| 29 | 15, 28 | remulcld 8102 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
| 30 | 4, 8, 9, 29 | fvmptd3 5672 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
| 31 | 24, 4 | trilpolemclim 15908 | . . 3 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) |
| 32 | 2, 3, 30, 29, 31 | isumrecl 11682 | . 2 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
| 33 | 1, 32 | eqeltrid 2291 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1372 ∈ wcel 2175 {cpr 3633 ↦ cmpt 4104 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 ℝcr 7923 0cc0 7924 1c1 7925 · cmul 7929 / cdiv 8744 ℕcn 9035 2c2 9086 ℤcz 9371 ℝ+crp 9774 ↑cexp 10681 Σcsu 11606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: trilpolemgt1 15911 trilpolemeq1 15912 trilpolemlt1 15913 trilpo 15915 redcwlpo 15927 nconstwlpolem 15937 neapmkvlem 15939 neapmkv 15940 |
| Copyright terms: Public domain | W3C validator |