![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemcl | GIF version |
Description: Lemma for trilpo 15063. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
Ref | Expression |
---|---|
trilpolemgt1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
trilpolemgt1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
Ref | Expression |
---|---|
trilpolemcl | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trilpolemgt1.a | . 2 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
2 | nnuz 9576 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1zzd 9293 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
4 | eqid 2187 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) | |
5 | oveq2 5896 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) | |
6 | 5 | oveq2d 5904 | . . . . 5 ⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
7 | fveq2 5527 | . . . . 5 ⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) | |
8 | 6, 7 | oveq12d 5906 | . . . 4 ⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
10 | 2rp 9671 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
11 | 10 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+) |
12 | nnz 9285 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ → 𝑖 ∈ ℤ) | |
13 | 12 | adantl 277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
14 | 11, 13 | rpexpcld 10691 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+) |
15 | 14 | rprecred 9721 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
16 | 0re 7970 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
17 | eleq1 2250 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 0 → ((𝐹‘𝑖) ∈ ℝ ↔ 0 ∈ ℝ)) | |
18 | 16, 17 | mpbiri 168 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ) |
19 | 18 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ)) |
20 | 1re 7969 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
21 | eleq1 2250 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 1 → ((𝐹‘𝑖) ∈ ℝ ↔ 1 ∈ ℝ)) | |
22 | 20, 21 | mpbiri 168 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ) |
23 | 22 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ)) |
24 | trilpolemgt1.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
25 | 24 | ffvelcdmda 5664 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) |
26 | elpri 3627 | . . . . . . 7 ⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | |
27 | 25, 26 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
28 | 19, 23, 27 | mpjaod 719 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
29 | 15, 28 | remulcld 8001 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
30 | 4, 8, 9, 29 | fvmptd3 5622 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
31 | 24, 4 | trilpolemclim 15056 | . . 3 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) |
32 | 2, 3, 30, 29, 31 | isumrecl 11450 | . 2 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
33 | 1, 32 | eqeltrid 2274 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1363 ∈ wcel 2158 {cpr 3605 ↦ cmpt 4076 ⟶wf 5224 ‘cfv 5228 (class class class)co 5888 ℝcr 7823 0cc0 7824 1c1 7825 · cmul 7829 / cdiv 8642 ℕcn 8932 2c2 8983 ℤcz 9266 ℝ+crp 9666 ↑cexp 10532 Σcsu 11374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 ax-arch 7943 ax-caucvg 7944 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-frec 6405 df-1o 6430 df-oadd 6434 df-er 6548 df-en 6754 df-dom 6755 df-fin 6756 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-n0 9190 df-z 9267 df-uz 9542 df-q 9633 df-rp 9667 df-ico 9907 df-fz 10022 df-fzo 10156 df-seqfrec 10459 df-exp 10533 df-ihash 10769 df-cj 10864 df-re 10865 df-im 10866 df-rsqrt 11020 df-abs 11021 df-clim 11300 df-sumdc 11375 |
This theorem is referenced by: trilpolemgt1 15059 trilpolemeq1 15060 trilpolemlt1 15061 trilpo 15063 redcwlpo 15075 nconstwlpolem 15085 neapmkvlem 15087 neapmkv 15088 |
Copyright terms: Public domain | W3C validator |