Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemcl GIF version

Theorem trilpolemcl 13916
Description: Lemma for trilpo 13922. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
Assertion
Ref Expression
trilpolemcl (𝜑𝐴 ∈ ℝ)
Distinct variable groups:   𝑖,𝐹   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemcl
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 trilpolemgt1.a . 2 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
2 nnuz 9501 . . 3 ℕ = (ℤ‘1)
3 1zzd 9218 . . 3 (𝜑 → 1 ∈ ℤ)
4 eqid 2165 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
5 oveq2 5850 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
65oveq2d 5858 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
7 fveq2 5486 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
86, 7oveq12d 5860 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
9 simpr 109 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
10 2rp 9594 . . . . . . . 8 2 ∈ ℝ+
1110a1i 9 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
12 nnz 9210 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
1312adantl 275 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1411, 13rpexpcld 10612 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1514rprecred 9644 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 7899 . . . . . . . 8 0 ∈ ℝ
17 eleq1 2229 . . . . . . . 8 ((𝐹𝑖) = 0 → ((𝐹𝑖) ∈ ℝ ↔ 0 ∈ ℝ))
1816, 17mpbiri 167 . . . . . . 7 ((𝐹𝑖) = 0 → (𝐹𝑖) ∈ ℝ)
1918a1i 9 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 → (𝐹𝑖) ∈ ℝ))
20 1re 7898 . . . . . . . 8 1 ∈ ℝ
21 eleq1 2229 . . . . . . . 8 ((𝐹𝑖) = 1 → ((𝐹𝑖) ∈ ℝ ↔ 1 ∈ ℝ))
2220, 21mpbiri 167 . . . . . . 7 ((𝐹𝑖) = 1 → (𝐹𝑖) ∈ ℝ)
2322a1i 9 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 1 → (𝐹𝑖) ∈ ℝ))
24 trilpolemgt1.f . . . . . . . 8 (𝜑𝐹:ℕ⟶{0, 1})
2524ffvelrnda 5620 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
26 elpri 3599 . . . . . . 7 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
2725, 26syl 14 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
2819, 23, 27mpjaod 708 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2915, 28remulcld 7929 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
304, 8, 9, 29fvmptd3 5579 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
3124, 4trilpolemclim 13915 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
322, 3, 30, 29, 31isumrecl 11370 . 2 (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
331, 32eqeltrid 2253 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  {cpr 3577  cmpt 4043  wf 5184  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   · cmul 7758   / cdiv 8568  cn 8857  2c2 8908  cz 9191  +crp 9589  cexp 10454  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  trilpolemgt1  13918  trilpolemeq1  13919  trilpolemlt1  13920  trilpo  13922  redcwlpo  13934  nconstwlpolem  13943  neapmkvlem  13945  neapmkv  13946
  Copyright terms: Public domain W3C validator