Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > trilpolemcl | GIF version |
Description: Lemma for trilpo 14075. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
Ref | Expression |
---|---|
trilpolemgt1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
trilpolemgt1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
Ref | Expression |
---|---|
trilpolemcl | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trilpolemgt1.a | . 2 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
2 | nnuz 9522 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1zzd 9239 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
4 | eqid 2170 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) | |
5 | oveq2 5861 | . . . . . 6 ⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) | |
6 | 5 | oveq2d 5869 | . . . . 5 ⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
7 | fveq2 5496 | . . . . 5 ⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) | |
8 | 6, 7 | oveq12d 5871 | . . . 4 ⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
9 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
10 | 2rp 9615 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
11 | 10 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈ ℝ+) |
12 | nnz 9231 | . . . . . . . 8 ⊢ (𝑖 ∈ ℕ → 𝑖 ∈ ℤ) | |
13 | 12 | adantl 275 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
14 | 11, 13 | rpexpcld 10633 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+) |
15 | 14 | rprecred 9665 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ) |
16 | 0re 7920 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
17 | eleq1 2233 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 0 → ((𝐹‘𝑖) ∈ ℝ ↔ 0 ∈ ℝ)) | |
18 | 16, 17 | mpbiri 167 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ) |
19 | 18 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 → (𝐹‘𝑖) ∈ ℝ)) |
20 | 1re 7919 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
21 | eleq1 2233 | . . . . . . . 8 ⊢ ((𝐹‘𝑖) = 1 → ((𝐹‘𝑖) ∈ ℝ ↔ 1 ∈ ℝ)) | |
22 | 20, 21 | mpbiri 167 | . . . . . . 7 ⊢ ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ) |
23 | 22 | a1i 9 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 1 → (𝐹‘𝑖) ∈ ℝ)) |
24 | trilpolemgt1.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
25 | 24 | ffvelrnda 5631 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) |
26 | elpri 3606 | . . . . . . 7 ⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) | |
27 | 25, 26 | syl 14 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
28 | 19, 23, 27 | mpjaod 713 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
29 | 15, 28 | remulcld 7950 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
30 | 4, 8, 9, 29 | fvmptd3 5589 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
31 | 24, 4 | trilpolemclim 14068 | . . 3 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) |
32 | 2, 3, 30, 29, 31 | isumrecl 11392 | . 2 ⊢ (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
33 | 1, 32 | eqeltrid 2257 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 703 = wceq 1348 ∈ wcel 2141 {cpr 3584 ↦ cmpt 4050 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 · cmul 7779 / cdiv 8589 ℕcn 8878 2c2 8929 ℤcz 9212 ℝ+crp 9610 ↑cexp 10475 Σcsu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: trilpolemgt1 14071 trilpolemeq1 14072 trilpolemlt1 14073 trilpo 14075 redcwlpo 14087 nconstwlpolem 14096 neapmkvlem 14098 neapmkv 14099 |
Copyright terms: Public domain | W3C validator |