ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpodvdsmulf1o GIF version

Theorem mpodvdsmulf1o 15649
Description: If 𝑀 and 𝑁 are two coprime integers, multiplication forms a bijection from the set of pairs 𝑗, 𝑘 where 𝑗𝑀 and 𝑘𝑁, to the set of divisors of 𝑀 · 𝑁. (Contributed by GG, 18-Apr-2025.)
Hypotheses
Ref Expression
mpodvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
mpodvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
mpodvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
mpodvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
mpodvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
mpodvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
Assertion
Ref Expression
mpodvdsmulf1o (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem mpodvdsmulf1o
Dummy variables 𝑤 𝑢 𝑣 𝑖 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpomulf 8124 . . . . . . 7 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
2 ffn 5469 . . . . . . 7 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ))
31, 2ax-mp 5 . . . . . 6 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
4 mpodvdsmulf1o.x . . . . . . . . 9 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
54ssrab3 3310 . . . . . . . 8 𝑋 ⊆ ℕ
6 nnsscn 9103 . . . . . . . 8 ℕ ⊆ ℂ
75, 6sstri 3233 . . . . . . 7 𝑋 ⊆ ℂ
8 mpodvdsmulf1o.y . . . . . . . . 9 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
98ssrab3 3310 . . . . . . . 8 𝑌 ⊆ ℕ
109, 6sstri 3233 . . . . . . 7 𝑌 ⊆ ℂ
11 xpss12 4823 . . . . . . 7 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
127, 10, 11mp2an 426 . . . . . 6 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
13 fnssres 5432 . . . . . 6 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
143, 12, 13mp2an 426 . . . . 5 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)
1514a1i 9 . . . 4 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
16 ovres 6136 . . . . . . 7 ((𝑖𝑋𝑗𝑌) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗))
1716adantl 277 . . . . . 6 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗))
187sseli 3220 . . . . . . . . . 10 (𝑖𝑋𝑖 ∈ ℂ)
1918adantr 276 . . . . . . . . 9 ((𝑖𝑋𝑗𝑌) → 𝑖 ∈ ℂ)
2010sseli 3220 . . . . . . . . . 10 (𝑗𝑌𝑗 ∈ ℂ)
2120adantl 277 . . . . . . . . 9 ((𝑖𝑋𝑗𝑌) → 𝑗 ∈ ℂ)
2219, 21mulcld 8155 . . . . . . . . 9 ((𝑖𝑋𝑗𝑌) → (𝑖 · 𝑗) ∈ ℂ)
23 oveq1 6001 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑥 · 𝑦) = (𝑖 · 𝑦))
24 oveq2 6002 . . . . . . . . . . 11 (𝑦 = 𝑗 → (𝑖 · 𝑦) = (𝑖 · 𝑗))
25 eqid 2229 . . . . . . . . . . 11 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
2623, 24, 25ovmpog 6130 . . . . . . . . . 10 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ (𝑖 · 𝑗) ∈ ℂ) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑖 · 𝑗))
2726eqcomd 2235 . . . . . . . . 9 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ (𝑖 · 𝑗) ∈ ℂ) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗))
2819, 21, 22, 27syl3anc 1271 . . . . . . . 8 ((𝑖𝑋𝑗𝑌) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗))
2928adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗))
305sseli 3220 . . . . . . . . . 10 (𝑖𝑋𝑖 ∈ ℕ)
3130ad2antrl 490 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑖 ∈ ℕ)
329sseli 3220 . . . . . . . . . 10 (𝑗𝑌𝑗 ∈ ℕ)
3332ad2antll 491 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑗 ∈ ℕ)
3431, 33nnmulcld 9147 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖 · 𝑗) ∈ ℕ)
35 breq1 4085 . . . . . . . . . . . 12 (𝑥 = 𝑗 → (𝑥𝑁𝑗𝑁))
3635, 8elrab2 2962 . . . . . . . . . . 11 (𝑗𝑌 ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁))
3736simprbi 275 . . . . . . . . . 10 (𝑗𝑌𝑗𝑁)
3837ad2antll 491 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑗𝑁)
39 breq1 4085 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝑥𝑀𝑖𝑀))
4039, 4elrab2 2962 . . . . . . . . . . 11 (𝑖𝑋 ↔ (𝑖 ∈ ℕ ∧ 𝑖𝑀))
4140simprbi 275 . . . . . . . . . 10 (𝑖𝑋𝑖𝑀)
4241ad2antrl 490 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑖𝑀)
4333nnzd 9556 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑗 ∈ ℤ)
44 mpodvdsmulf1o.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
4544adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑁 ∈ ℕ)
4645nnzd 9556 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑁 ∈ ℤ)
4731nnzd 9556 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑖 ∈ ℤ)
48 dvdscmul 12315 . . . . . . . . . . 11 ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑗𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁)))
4943, 46, 47, 48syl3anc 1271 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑗𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁)))
50 mpodvdsmulf1o.1 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
5150adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑀 ∈ ℕ)
5251nnzd 9556 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → 𝑀 ∈ ℤ)
53 dvdsmulc 12316 . . . . . . . . . . 11 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)))
5447, 52, 46, 53syl3anc 1271 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)))
5534nnzd 9556 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖 · 𝑗) ∈ ℤ)
5647, 46zmulcld 9563 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖 · 𝑁) ∈ ℤ)
5752, 46zmulcld 9563 . . . . . . . . . . 11 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑀 · 𝑁) ∈ ℤ)
58 dvdstr 12325 . . . . . . . . . . 11 (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑖 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)))
5955, 56, 57, 58syl3anc 1271 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)))
6049, 54, 59syl2and 295 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → ((𝑗𝑁𝑖𝑀) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)))
6138, 42, 60mp2and 433 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))
62 breq1 4085 . . . . . . . . 9 (𝑥 = (𝑖 · 𝑗) → (𝑥 ∥ (𝑀 · 𝑁) ↔ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)))
63 mpodvdsmulf1o.z . . . . . . . . 9 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
6462, 63elrab2 2962 . . . . . . . 8 ((𝑖 · 𝑗) ∈ 𝑍 ↔ ((𝑖 · 𝑗) ∈ ℕ ∧ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)))
6534, 61, 64sylanbrc 417 . . . . . . 7 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖 · 𝑗) ∈ 𝑍)
6629, 65eqeltrrd 2307 . . . . . 6 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) ∈ 𝑍)
6717, 66eqeltrd 2306 . . . . 5 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍)
6867ralrimivva 2612 . . . 4 (𝜑 → ∀𝑖𝑋𝑗𝑌 (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍)
69 ffnov 6099 . . . 4 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ ∀𝑖𝑋𝑗𝑌 (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍))
7015, 68, 69sylanbrc 417 . . 3 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍)
7119ad2antlr 489 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → 𝑖 ∈ ℂ)
7221ad2antlr 489 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → 𝑗 ∈ ℂ)
7322ad2antlr 489 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → (𝑖 · 𝑗) ∈ ℂ)
7471, 72, 73, 26syl3anc 1271 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑖 · 𝑗))
757sseli 3220 . . . . . . . . . 10 (𝑚𝑋𝑚 ∈ ℂ)
7675ad2antrl 490 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → 𝑚 ∈ ℂ)
7710sseli 3220 . . . . . . . . . 10 (𝑛𝑌𝑛 ∈ ℂ)
7877ad2antll 491 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → 𝑛 ∈ ℂ)
7976, 78mulcld 8155 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → (𝑚 · 𝑛) ∈ ℂ)
80 oveq1 6001 . . . . . . . . . 10 (𝑥 = 𝑚 → (𝑥 · 𝑦) = (𝑚 · 𝑦))
81 oveq2 6002 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝑚 · 𝑦) = (𝑚 · 𝑛))
8280, 81, 25ovmpog 6130 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = (𝑚 · 𝑛))
8376, 78, 79, 82syl3anc 1271 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = (𝑚 · 𝑛))
8474, 83eqeq12d 2244 . . . . . . 7 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) ↔ (𝑖 · 𝑗) = (𝑚 · 𝑛)))
8531adantr 276 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ)
8685nnnn0d 9410 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ0)
87 simprll 537 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚𝑋)
885, 87sselid 3222 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ)
8988nnnn0d 9410 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ0)
9085nnzd 9556 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℤ)
9133adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℕ)
9291nnzd 9556 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℤ)
93 dvdsmul1 12310 . . . . . . . . . . . . 13 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∥ (𝑖 · 𝑗))
9490, 92, 93syl2anc 411 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑖 · 𝑗))
95 simprr 531 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑚 · 𝑛))
967, 87sselid 3222 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℂ)
97 simprlr 538 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛𝑌)
9810, 97sselid 3222 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℂ)
9996, 98mulcomd 8156 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑛 · 𝑚))
10095, 99eqtrd 2262 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑛 · 𝑚))
10194, 100breqtrd 4108 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑛 · 𝑚))
1029, 97sselid 3222 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℕ)
103102nnzd 9556 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℤ)
10446adantr 276 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑁 ∈ ℤ)
10590, 104gcdcomd 12481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = (𝑁 gcd 𝑖))
10652adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑀 ∈ ℤ)
10744nnzd 9556 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℤ)
10850nnzd 9556 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℤ)
109107, 108gcdcomd 12481 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
110 mpodvdsmulf1o.3 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 gcd 𝑁) = 1)
111109, 110eqtrd 2262 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 gcd 𝑀) = 1)
112111ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑀) = 1)
11342adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖𝑀)
114 rpdvds 12607 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑖𝑀)) → (𝑁 gcd 𝑖) = 1)
115104, 90, 106, 112, 113, 114syl32anc 1279 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑖) = 1)
116105, 115eqtrd 2262 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = 1)
117 breq1 4085 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥𝑁𝑛𝑁))
118117, 8elrab2 2962 . . . . . . . . . . . . . 14 (𝑛𝑌 ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑁))
119118simprbi 275 . . . . . . . . . . . . 13 (𝑛𝑌𝑛𝑁)
12097, 119syl 14 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛𝑁)
121 rpdvds 12607 . . . . . . . . . . . 12 (((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑖 gcd 𝑁) = 1 ∧ 𝑛𝑁)) → (𝑖 gcd 𝑛) = 1)
12290, 103, 104, 116, 120, 121syl32anc 1279 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑛) = 1)
12388nnzd 9556 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℤ)
124 coprmdvds 12600 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖𝑚))
12590, 103, 123, 124syl3anc 1271 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖𝑚))
126101, 122, 125mp2and 433 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖𝑚)
127 dvdsmul1 12310 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∥ (𝑚 · 𝑛))
128123, 103, 127syl2anc 411 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑚 · 𝑛))
12985nncnd 9112 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℂ)
13091nncnd 9112 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℂ)
131129, 130mulcomd 8156 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑗 · 𝑖))
13295, 131eqtr3d 2264 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑗 · 𝑖))
133128, 132breqtrd 4108 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑗 · 𝑖))
134123, 104gcdcomd 12481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = (𝑁 gcd 𝑚))
135 breq1 4085 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑚 → (𝑥𝑀𝑚𝑀))
136135, 4elrab2 2962 . . . . . . . . . . . . . . . 16 (𝑚𝑋 ↔ (𝑚 ∈ ℕ ∧ 𝑚𝑀))
137136simprbi 275 . . . . . . . . . . . . . . 15 (𝑚𝑋𝑚𝑀)
13887, 137syl 14 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚𝑀)
139 rpdvds 12607 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑚𝑀)) → (𝑁 gcd 𝑚) = 1)
140104, 123, 106, 112, 138, 139syl32anc 1279 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑚) = 1)
141134, 140eqtrd 2262 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = 1)
14238adantr 276 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗𝑁)
143 rpdvds 12607 . . . . . . . . . . . 12 (((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑚 gcd 𝑁) = 1 ∧ 𝑗𝑁)) → (𝑚 gcd 𝑗) = 1)
144123, 92, 104, 141, 142, 143syl32anc 1279 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑗) = 1)
145 coprmdvds 12600 . . . . . . . . . . . 12 ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚𝑖))
146123, 92, 90, 145syl3anc 1271 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚𝑖))
147133, 144, 146mp2and 433 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚𝑖)
148 dvdseq 12345 . . . . . . . . . 10 (((𝑖 ∈ ℕ0𝑚 ∈ ℕ0) ∧ (𝑖𝑚𝑚𝑖)) → 𝑖 = 𝑚)
14986, 89, 126, 147, 148syl22anc 1272 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 = 𝑚)
15085nnap0d 9144 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 # 0)
151149oveq1d 6009 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑛) = (𝑚 · 𝑛))
15295, 151eqtr4d 2265 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑖 · 𝑛))
153130, 98, 129, 150, 152mulcanapad 8798 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 = 𝑛)
154149, 153opeq12d 3864 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ ((𝑚𝑋𝑛𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩)
155154expr 375 . . . . . . 7 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → ((𝑖 · 𝑗) = (𝑚 · 𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
15684, 155sylbid 150 . . . . . 6 (((𝜑 ∧ (𝑖𝑋𝑗𝑌)) ∧ (𝑚𝑋𝑛𝑌)) → ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
157156ralrimivva 2612 . . . . 5 ((𝜑 ∧ (𝑖𝑋𝑗𝑌)) → ∀𝑚𝑋𝑛𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
158157ralrimivva 2612 . . . 4 (𝜑 → ∀𝑖𝑋𝑗𝑌𝑚𝑋𝑛𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
159 fvres 5647 . . . . . . . . 9 (𝑢 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢))
160 fvres 5647 . . . . . . . . 9 (𝑣 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣))
161159, 160eqeqan12d 2245 . . . . . . . 8 ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣)))
162161imbi1d 231 . . . . . . 7 ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → (((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣)))
163162ralbidva 2526 . . . . . 6 (𝑢 ∈ (𝑋 × 𝑌) → (∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣)))
164163ralbiia 2544 . . . . 5 (∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣))
165 fveq2 5623 . . . . . . . . . . 11 (𝑣 = ⟨𝑚, 𝑛⟩ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑚, 𝑛⟩))
166 df-ov 5997 . . . . . . . . . . 11 (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑚, 𝑛⟩)
167165, 166eqtr4di 2280 . . . . . . . . . 10 (𝑣 = ⟨𝑚, 𝑛⟩ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛))
168167eqeq2d 2241 . . . . . . . . 9 (𝑣 = ⟨𝑚, 𝑛⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛)))
169 eqeq2 2239 . . . . . . . . 9 (𝑣 = ⟨𝑚, 𝑛⟩ → (𝑢 = 𝑣𝑢 = ⟨𝑚, 𝑛⟩))
170168, 169imbi12d 234 . . . . . . . 8 (𝑣 = ⟨𝑚, 𝑛⟩ → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = ⟨𝑚, 𝑛⟩)))
171170ralxp 4862 . . . . . . 7 (∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚𝑋𝑛𝑌 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = ⟨𝑚, 𝑛⟩))
172 fveq2 5623 . . . . . . . . . . 11 (𝑢 = ⟨𝑖, 𝑗⟩ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑖, 𝑗⟩))
173 df-ov 5997 . . . . . . . . . . 11 (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑖, 𝑗⟩)
174172, 173eqtr4di 2280 . . . . . . . . . 10 (𝑢 = ⟨𝑖, 𝑗⟩ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗))
175174eqeq1d 2238 . . . . . . . . 9 (𝑢 = ⟨𝑖, 𝑗⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) ↔ (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛)))
176 eqeq1 2236 . . . . . . . . 9 (𝑢 = ⟨𝑖, 𝑗⟩ → (𝑢 = ⟨𝑚, 𝑛⟩ ↔ ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
177175, 176imbi12d 234 . . . . . . . 8 (𝑢 = ⟨𝑖, 𝑗⟩ → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = ⟨𝑚, 𝑛⟩) ↔ ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩)))
1781772ralbidv 2554 . . . . . . 7 (𝑢 = ⟨𝑖, 𝑗⟩ → (∀𝑚𝑋𝑛𝑌 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = ⟨𝑚, 𝑛⟩) ↔ ∀𝑚𝑋𝑛𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩)))
179171, 178bitrid 192 . . . . . 6 (𝑢 = ⟨𝑖, 𝑗⟩ → (∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚𝑋𝑛𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩)))
180179ralxp 4862 . . . . 5 (∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖𝑋𝑗𝑌𝑚𝑋𝑛𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
181164, 180bitri 184 . . . 4 (∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖𝑋𝑗𝑌𝑚𝑋𝑛𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → ⟨𝑖, 𝑗⟩ = ⟨𝑚, 𝑛⟩))
182158, 181sylibr 134 . . 3 (𝜑 → ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣))
183 dff13 5885 . . 3 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣)))
18470, 182, 183sylanbrc 417 . 2 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1𝑍)
185 breq1 4085 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝑥 ∥ (𝑀 · 𝑁) ↔ 𝑤 ∥ (𝑀 · 𝑁)))
186185, 63elrab2 2962 . . . . . . . . . . 11 (𝑤𝑍 ↔ (𝑤 ∈ ℕ ∧ 𝑤 ∥ (𝑀 · 𝑁)))
187186simplbi 274 . . . . . . . . . 10 (𝑤𝑍𝑤 ∈ ℕ)
188187adantl 277 . . . . . . . . 9 ((𝜑𝑤𝑍) → 𝑤 ∈ ℕ)
189188nnzd 9556 . . . . . . . 8 ((𝜑𝑤𝑍) → 𝑤 ∈ ℤ)
19050adantr 276 . . . . . . . . 9 ((𝜑𝑤𝑍) → 𝑀 ∈ ℕ)
191190nnzd 9556 . . . . . . . 8 ((𝜑𝑤𝑍) → 𝑀 ∈ ℤ)
192190nnne0d 9143 . . . . . . . . 9 ((𝜑𝑤𝑍) → 𝑀 ≠ 0)
193 simpr 110 . . . . . . . . . 10 ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0)
194193necon3ai 2449 . . . . . . . . 9 (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0))
195192, 194syl 14 . . . . . . . 8 ((𝜑𝑤𝑍) → ¬ (𝑤 = 0 ∧ 𝑀 = 0))
196 gcdn0cl 12469 . . . . . . . 8 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ)
197189, 191, 195, 196syl21anc 1270 . . . . . . 7 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑀) ∈ ℕ)
198 gcddvds 12470 . . . . . . . . 9 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
199189, 191, 198syl2anc 411 . . . . . . . 8 ((𝜑𝑤𝑍) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
200199simprd 114 . . . . . . 7 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑀) ∥ 𝑀)
201 breq1 4085 . . . . . . . 8 (𝑥 = (𝑤 gcd 𝑀) → (𝑥𝑀 ↔ (𝑤 gcd 𝑀) ∥ 𝑀))
202201, 4elrab2 2962 . . . . . . 7 ((𝑤 gcd 𝑀) ∈ 𝑋 ↔ ((𝑤 gcd 𝑀) ∈ ℕ ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
203197, 200, 202sylanbrc 417 . . . . . 6 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑀) ∈ 𝑋)
20444adantr 276 . . . . . . . . 9 ((𝜑𝑤𝑍) → 𝑁 ∈ ℕ)
205204nnzd 9556 . . . . . . . 8 ((𝜑𝑤𝑍) → 𝑁 ∈ ℤ)
206204nnne0d 9143 . . . . . . . . 9 ((𝜑𝑤𝑍) → 𝑁 ≠ 0)
207 simpr 110 . . . . . . . . . 10 ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
208207necon3ai 2449 . . . . . . . . 9 (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0))
209206, 208syl 14 . . . . . . . 8 ((𝜑𝑤𝑍) → ¬ (𝑤 = 0 ∧ 𝑁 = 0))
210 gcdn0cl 12469 . . . . . . . 8 (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ)
211189, 205, 209, 210syl21anc 1270 . . . . . . 7 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑁) ∈ ℕ)
212 gcddvds 12470 . . . . . . . . 9 ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁))
213189, 205, 212syl2anc 411 . . . . . . . 8 ((𝜑𝑤𝑍) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁))
214213simprd 114 . . . . . . 7 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑁) ∥ 𝑁)
215 breq1 4085 . . . . . . . 8 (𝑥 = (𝑤 gcd 𝑁) → (𝑥𝑁 ↔ (𝑤 gcd 𝑁) ∥ 𝑁))
216215, 8elrab2 2962 . . . . . . 7 ((𝑤 gcd 𝑁) ∈ 𝑌 ↔ ((𝑤 gcd 𝑁) ∈ ℕ ∧ (𝑤 gcd 𝑁) ∥ 𝑁))
217211, 214, 216sylanbrc 417 . . . . . 6 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑁) ∈ 𝑌)
218203, 217opelxpd 4749 . . . . 5 ((𝜑𝑤𝑍) → ⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩ ∈ (𝑋 × 𝑌))
219218fvresd 5648 . . . . . . 7 ((𝜑𝑤𝑍) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩))
220 df-ov 5997 . . . . . . . 8 ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩)
221197nncnd 9112 . . . . . . . . 9 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑀) ∈ ℂ)
222211nncnd 9112 . . . . . . . . 9 ((𝜑𝑤𝑍) → (𝑤 gcd 𝑁) ∈ ℂ)
223197, 211nnmulcld 9147 . . . . . . . . 9 ((𝜑𝑤𝑍) → ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) ∈ ℕ)
224 oveq1 6001 . . . . . . . . . 10 (𝑥 = (𝑤 gcd 𝑀) → (𝑥 · 𝑦) = ((𝑤 gcd 𝑀) · 𝑦))
225 oveq2 6002 . . . . . . . . . 10 (𝑦 = (𝑤 gcd 𝑁) → ((𝑤 gcd 𝑀) · 𝑦) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)))
226224, 225, 25ovmpog 6130 . . . . . . . . 9 (((𝑤 gcd 𝑀) ∈ ℂ ∧ (𝑤 gcd 𝑁) ∈ ℂ ∧ ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) ∈ ℕ) → ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)))
227221, 222, 223, 226syl3anc 1271 . . . . . . . 8 ((𝜑𝑤𝑍) → ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)))
228220, 227eqtr3id 2276 . . . . . . 7 ((𝜑𝑤𝑍) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)))
229 df-ov 5997 . . . . . . . 8 ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩)
230229a1i 9 . . . . . . 7 ((𝜑𝑤𝑍) → ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩))
231219, 228, 2303eqtrd 2266 . . . . . 6 ((𝜑𝑤𝑍) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩) = ( · ‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩))
232110adantr 276 . . . . . . . 8 ((𝜑𝑤𝑍) → (𝑀 gcd 𝑁) = 1)
233 rpmulgcd2 12603 . . . . . . . 8 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)))
234189, 191, 205, 232, 233syl31anc 1274 . . . . . . 7 ((𝜑𝑤𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)))
235234, 229eqtrdi 2278 . . . . . 6 ((𝜑𝑤𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ( · ‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩))
236186simprbi 275 . . . . . . . 8 (𝑤𝑍𝑤 ∥ (𝑀 · 𝑁))
237236adantl 277 . . . . . . 7 ((𝜑𝑤𝑍) → 𝑤 ∥ (𝑀 · 𝑁))
23850, 44nnmulcld 9147 . . . . . . . 8 (𝜑 → (𝑀 · 𝑁) ∈ ℕ)
239 gcdeq 12530 . . . . . . . 8 ((𝑤 ∈ ℕ ∧ (𝑀 · 𝑁) ∈ ℕ) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤𝑤 ∥ (𝑀 · 𝑁)))
240187, 238, 239syl2anr 290 . . . . . . 7 ((𝜑𝑤𝑍) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤𝑤 ∥ (𝑀 · 𝑁)))
241237, 240mpbird 167 . . . . . 6 ((𝜑𝑤𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = 𝑤)
242231, 235, 2413eqtr2rd 2269 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩))
243 fveq2 5623 . . . . . 6 (𝑢 = ⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩))
244243rspceeqv 2925 . . . . 5 ((⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩ ∈ (𝑋 × 𝑌) ∧ 𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘⟨(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)⟩)) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢))
245218, 242, 244syl2anc 411 . . . 4 ((𝜑𝑤𝑍) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢))
246245ralrimiva 2603 . . 3 (𝜑 → ∀𝑤𝑍𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢))
247 dffo3 5775 . . 3 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑤𝑍𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)))
24870, 246, 247sylanbrc 417 . 2 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
249 df-f1o 5321 . 2 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1𝑍 ∧ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍))
250184, 248, 249sylanbrc 417 1 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  {crab 2512  wss 3197  cop 3669   class class class wbr 4082   × cxp 4714  cres 4718   Fn wfn 5309  wf 5310  1-1wf1 5311  ontowfo 5312  1-1-ontowf1o 5313  cfv 5314  (class class class)co 5994  cmpo 5996  cc 7985  0cc0 7987  1c1 7988   · cmul 7992  cn 9098  0cn0 9357  cz 9434  cdvds 12284   gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461
This theorem is referenced by:  fsumdvdsmul  15650
  Copyright terms: Public domain W3C validator