Step | Hyp | Ref
| Expression |
1 | | mpomulf 8014 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ ×
ℂ)⟶ℂ |
2 | | ffn 5407 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) Fn (ℂ ×
ℂ)) |
3 | 1, 2 | ax-mp 5 |
. . . . . 6
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ ×
ℂ) |
4 | | mpodvdsmulf1o.x |
. . . . . . . . 9
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
5 | 4 | ssrab3 3269 |
. . . . . . . 8
⊢ 𝑋 ⊆
ℕ |
6 | | nnsscn 8992 |
. . . . . . . 8
⊢ ℕ
⊆ ℂ |
7 | 5, 6 | sstri 3192 |
. . . . . . 7
⊢ 𝑋 ⊆
ℂ |
8 | | mpodvdsmulf1o.y |
. . . . . . . . 9
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
9 | 8 | ssrab3 3269 |
. . . . . . . 8
⊢ 𝑌 ⊆
ℕ |
10 | 9, 6 | sstri 3192 |
. . . . . . 7
⊢ 𝑌 ⊆
ℂ |
11 | | xpss12 4770 |
. . . . . . 7
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
12 | 7, 10, 11 | mp2an 426 |
. . . . . 6
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
13 | | fnssres 5371 |
. . . . . 6
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
14 | 3, 12, 13 | mp2an 426 |
. . . . 5
⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) |
15 | 14 | a1i 9 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
16 | | ovres 6063 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
17 | 16 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
18 | 7 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ ℂ) |
19 | 18 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → 𝑖 ∈ ℂ) |
20 | 10 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∈ ℂ) |
21 | 20 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → 𝑗 ∈ ℂ) |
22 | 19, 21 | mulcld 8045 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖 · 𝑗) ∈ ℂ) |
23 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑥 · 𝑦) = (𝑖 · 𝑦)) |
24 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑗 → (𝑖 · 𝑦) = (𝑖 · 𝑗)) |
25 | | eqid 2196 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
26 | 23, 24, 25 | ovmpog 6057 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ (𝑖 · 𝑗) ∈ ℂ) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑖 · 𝑗)) |
27 | 26 | eqcomd 2202 |
. . . . . . . . 9
⊢ ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ (𝑖 · 𝑗) ∈ ℂ) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
28 | 19, 21, 22, 27 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
29 | 28 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
30 | 5 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ) |
31 | 30 | ad2antrl 490 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℕ) |
32 | 9 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ) |
33 | 32 | ad2antll 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℕ) |
34 | 31, 33 | nnmulcld 9036 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℕ) |
35 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑗 → (𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁)) |
36 | 35, 8 | elrab2 2923 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝑌 ↔ (𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁)) |
37 | 36 | simprbi 275 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁) |
38 | 37 | ad2antll 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∥ 𝑁) |
39 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑖 → (𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀)) |
40 | 39, 4 | elrab2 2923 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ 𝑋 ↔ (𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀)) |
41 | 40 | simprbi 275 |
. . . . . . . . . 10
⊢ (𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀) |
42 | 41 | ad2antrl 490 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∥ 𝑀) |
43 | 33 | nnzd 9444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑗 ∈ ℤ) |
44 | | mpodvdsmulf1o.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
45 | 44 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℕ) |
46 | 45 | nnzd 9444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑁 ∈ ℤ) |
47 | 31 | nnzd 9444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑖 ∈ ℤ) |
48 | | dvdscmul 11967 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
49 | 43, 46, 47, 48 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑗 ∥ 𝑁 → (𝑖 · 𝑗) ∥ (𝑖 · 𝑁))) |
50 | | mpodvdsmulf1o.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
51 | 50 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℕ) |
52 | 51 | nnzd 9444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → 𝑀 ∈ ℤ) |
53 | | dvdsmulc 11968 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
54 | 47, 52, 46, 53 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 ∥ 𝑀 → (𝑖 · 𝑁) ∥ (𝑀 · 𝑁))) |
55 | 34 | nnzd 9444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℤ) |
56 | 47, 46 | zmulcld 9451 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑁) ∈ ℤ) |
57 | 52, 46 | zmulcld 9451 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑀 · 𝑁) ∈ ℤ) |
58 | | dvdstr 11977 |
. . . . . . . . . . 11
⊢ (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑖 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
59 | 55, 56, 57, 58 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (((𝑖 · 𝑗) ∥ (𝑖 · 𝑁) ∧ (𝑖 · 𝑁) ∥ (𝑀 · 𝑁)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
60 | 49, 54, 59 | syl2and 295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ((𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
61 | 38, 42, 60 | mp2and 433 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∥ (𝑀 · 𝑁)) |
62 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑥 = (𝑖 · 𝑗) → (𝑥 ∥ (𝑀 · 𝑁) ↔ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
63 | | mpodvdsmulf1o.z |
. . . . . . . . 9
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
64 | 62, 63 | elrab2 2923 |
. . . . . . . 8
⊢ ((𝑖 · 𝑗) ∈ 𝑍 ↔ ((𝑖 · 𝑗) ∈ ℕ ∧ (𝑖 · 𝑗) ∥ (𝑀 · 𝑁))) |
65 | 34, 61, 64 | sylanbrc 417 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ 𝑍) |
66 | 29, 65 | eqeltrrd 2274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) ∈ 𝑍) |
67 | 17, 66 | eqeltrd 2273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
68 | 67 | ralrimivva 2579 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍) |
69 | | ffnov 6026 |
. . . 4
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) ∧ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 (𝑖((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))𝑗) ∈ 𝑍)) |
70 | 15, 68, 69 | sylanbrc 417 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍) |
71 | 19 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑖 ∈ ℂ) |
72 | 21 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑗 ∈ ℂ) |
73 | 22 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → (𝑖 · 𝑗) ∈ ℂ) |
74 | 71, 72, 73, 26 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑖 · 𝑗)) |
75 | 7 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∈ ℂ) |
76 | 75 | ad2antrl 490 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑚 ∈ ℂ) |
77 | 10 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∈ ℂ) |
78 | 77 | ad2antll 491 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → 𝑛 ∈ ℂ) |
79 | 76, 78 | mulcld 8045 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → (𝑚 · 𝑛) ∈ ℂ) |
80 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑚 → (𝑥 · 𝑦) = (𝑚 · 𝑦)) |
81 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (𝑚 · 𝑦) = (𝑚 · 𝑛)) |
82 | 80, 81, 25 | ovmpog 6057 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑚 · 𝑛) ∈ ℂ) → (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = (𝑚 · 𝑛)) |
83 | 76, 78, 79, 82 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = (𝑚 · 𝑛)) |
84 | 74, 83 | eqeq12d 2211 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) ↔ (𝑖 · 𝑗) = (𝑚 · 𝑛))) |
85 | 31 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ) |
86 | 85 | nnnn0d 9299 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℕ0) |
87 | | simprll 537 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ 𝑋) |
88 | 5, 87 | sselid 3181 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ) |
89 | 88 | nnnn0d 9299 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℕ0) |
90 | 85 | nnzd 9444 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℤ) |
91 | 33 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℕ) |
92 | 91 | nnzd 9444 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℤ) |
93 | | dvdsmul1 11962 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → 𝑖 ∥ (𝑖 · 𝑗)) |
94 | 90, 92, 93 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑖 · 𝑗)) |
95 | | simprr 531 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑚 · 𝑛)) |
96 | 7, 87 | sselid 3181 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℂ) |
97 | | simprlr 538 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ 𝑌) |
98 | 10, 97 | sselid 3181 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℂ) |
99 | 96, 98 | mulcomd 8046 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑛 · 𝑚)) |
100 | 95, 99 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑛 · 𝑚)) |
101 | 94, 100 | breqtrd 4059 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ (𝑛 · 𝑚)) |
102 | 9, 97 | sselid 3181 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℕ) |
103 | 102 | nnzd 9444 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∈ ℤ) |
104 | 46 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑁 ∈ ℤ) |
105 | 90, 104 | gcdcomd 12117 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = (𝑁 gcd 𝑖)) |
106 | 52 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑀 ∈ ℤ) |
107 | 44 | nnzd 9444 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℤ) |
108 | 50 | nnzd 9444 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ ℤ) |
109 | 107, 108 | gcdcomd 12117 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
110 | | mpodvdsmulf1o.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
111 | 109, 110 | eqtrd 2229 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
112 | 111 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑀) = 1) |
113 | 42 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑀) |
114 | | rpdvds 12243 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑖 ∥ 𝑀)) → (𝑁 gcd 𝑖) = 1) |
115 | 104, 90, 106, 112, 113, 114 | syl32anc 1257 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑖) = 1) |
116 | 105, 115 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑁) = 1) |
117 | | breq1 4036 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → (𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁)) |
118 | 117, 8 | elrab2 2923 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ 𝑌 ↔ (𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁)) |
119 | 118 | simprbi 275 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁) |
120 | 97, 119 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑛 ∥ 𝑁) |
121 | | rpdvds 12243 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑖 gcd 𝑁) = 1 ∧ 𝑛 ∥ 𝑁)) → (𝑖 gcd 𝑛) = 1) |
122 | 90, 103, 104, 116, 120, 121 | syl32anc 1257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 gcd 𝑛) = 1) |
123 | 88 | nnzd 9444 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∈ ℤ) |
124 | | coprmdvds 12236 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
125 | 90, 103, 123, 124 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑖 ∥ (𝑛 · 𝑚) ∧ (𝑖 gcd 𝑛) = 1) → 𝑖 ∥ 𝑚)) |
126 | 101, 122,
125 | mp2and 433 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∥ 𝑚) |
127 | | dvdsmul1 11962 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∥ (𝑚 · 𝑛)) |
128 | 123, 103,
127 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑚 · 𝑛)) |
129 | 85 | nncnd 9001 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 ∈ ℂ) |
130 | 91 | nncnd 9001 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∈ ℂ) |
131 | 129, 130 | mulcomd 8046 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑗 · 𝑖)) |
132 | 95, 131 | eqtr3d 2231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 · 𝑛) = (𝑗 · 𝑖)) |
133 | 128, 132 | breqtrd 4059 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ (𝑗 · 𝑖)) |
134 | 123, 104 | gcdcomd 12117 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = (𝑁 gcd 𝑚)) |
135 | | breq1 4036 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑚 → (𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀)) |
136 | 135, 4 | elrab2 2923 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ 𝑋 ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀)) |
137 | 136 | simprbi 275 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀) |
138 | 87, 137 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑀) |
139 | | rpdvds 12243 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((𝑁 gcd 𝑀) = 1 ∧ 𝑚 ∥ 𝑀)) → (𝑁 gcd 𝑚) = 1) |
140 | 104, 123,
106, 112, 138, 139 | syl32anc 1257 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑁 gcd 𝑚) = 1) |
141 | 134, 140 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑁) = 1) |
142 | 38 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 ∥ 𝑁) |
143 | | rpdvds 12243 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑚 gcd 𝑁) = 1 ∧ 𝑗 ∥ 𝑁)) → (𝑚 gcd 𝑗) = 1) |
144 | 123, 92, 104, 141, 142, 143 | syl32anc 1257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑚 gcd 𝑗) = 1) |
145 | | coprmdvds 12236 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
146 | 123, 92, 90, 145 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → ((𝑚 ∥ (𝑗 · 𝑖) ∧ (𝑚 gcd 𝑗) = 1) → 𝑚 ∥ 𝑖)) |
147 | 133, 144,
146 | mp2and 433 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑚 ∥ 𝑖) |
148 | | dvdseq 11996 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) ∧ (𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖)) → 𝑖 = 𝑚) |
149 | 86, 89, 126, 147, 148 | syl22anc 1250 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 = 𝑚) |
150 | 85 | nnap0d 9033 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑖 # 0) |
151 | 149 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑛) = (𝑚 · 𝑛)) |
152 | 95, 151 | eqtr4d 2232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → (𝑖 · 𝑗) = (𝑖 · 𝑛)) |
153 | 130, 98, 129, 150, 152 | mulcanapad 8687 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 𝑗 = 𝑛) |
154 | 149, 153 | opeq12d 3816 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ ((𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌) ∧ (𝑖 · 𝑗) = (𝑚 · 𝑛))) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉) |
155 | 154 | expr 375 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖 · 𝑗) = (𝑚 · 𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
156 | 84, 155 | sylbid 150 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) ∧ (𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌)) → ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
157 | 156 | ralrimivva 2579 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌)) → ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
158 | 157 | ralrimivva 2579 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
159 | | fvres 5582 |
. . . . . . . . 9
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢)) |
160 | | fvres 5582 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣)) |
161 | 159, 160 | eqeqan12d 2212 |
. . . . . . . 8
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣))) |
162 | 161 | imbi1d 231 |
. . . . . . 7
⊢ ((𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (𝑋 × 𝑌)) → (((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣))) |
163 | 162 | ralbidva 2493 |
. . . . . 6
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣))) |
164 | 163 | ralbiia 2511 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣)) |
165 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑚, 𝑛〉)) |
166 | | df-ov 5925 |
. . . . . . . . . . 11
⊢ (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑚, 𝑛〉) |
167 | 165, 166 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛)) |
168 | 167 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛))) |
169 | | eqeq2 2206 |
. . . . . . . . 9
⊢ (𝑣 = 〈𝑚, 𝑛〉 → (𝑢 = 𝑣 ↔ 𝑢 = 〈𝑚, 𝑛〉)) |
170 | 168, 169 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑣 = 〈𝑚, 𝑛〉 → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉))) |
171 | 170 | ralxp 4809 |
. . . . . . 7
⊢
(∀𝑣 ∈
(𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉)) |
172 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑖, 𝑗〉)) |
173 | | df-ov 5925 |
. . . . . . . . . . 11
⊢ (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑖, 𝑗〉) |
174 | 172, 173 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗)) |
175 | 174 | eqeq1d 2205 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) ↔ (𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛))) |
176 | | eqeq1 2203 |
. . . . . . . . 9
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (𝑢 = 〈𝑚, 𝑛〉 ↔ 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
177 | 175, 176 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → ((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
178 | 177 | 2ralbidv 2521 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 𝑢 = 〈𝑚, 𝑛〉) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
179 | 171, 178 | bitrid 192 |
. . . . . 6
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉))) |
180 | 179 | ralxp 4809 |
. . . . 5
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)(((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑢) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
181 | 164, 180 | bitri 184 |
. . . 4
⊢
(∀𝑢 ∈
(𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣) ↔ ∀𝑖 ∈ 𝑋 ∀𝑗 ∈ 𝑌 ∀𝑚 ∈ 𝑋 ∀𝑛 ∈ 𝑌 ((𝑖(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑗) = (𝑚(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑛) → 〈𝑖, 𝑗〉 = 〈𝑚, 𝑛〉)) |
182 | 158, 181 | sylibr 134 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣)) |
183 | | dff13 5815 |
. . 3
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑢 ∈ (𝑋 × 𝑌)∀𝑣 ∈ (𝑋 × 𝑌)((((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑣) → 𝑢 = 𝑣))) |
184 | 70, 182, 183 | sylanbrc 417 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍) |
185 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑥 ∥ (𝑀 · 𝑁) ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
186 | 185, 63 | elrab2 2923 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑍 ↔ (𝑤 ∈ ℕ ∧ 𝑤 ∥ (𝑀 · 𝑁))) |
187 | 186 | simplbi 274 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ) |
188 | 187 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℕ) |
189 | 188 | nnzd 9444 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∈ ℤ) |
190 | 50 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℕ) |
191 | 190 | nnzd 9444 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ∈ ℤ) |
192 | 190 | nnne0d 9032 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑀 ≠ 0) |
193 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑀 = 0) → 𝑀 = 0) |
194 | 193 | necon3ai 2416 |
. . . . . . . . 9
⊢ (𝑀 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
195 | 192, 194 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑀 = 0)) |
196 | | gcdn0cl 12105 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑀 = 0)) → (𝑤 gcd 𝑀) ∈ ℕ) |
197 | 189, 191,
195, 196 | syl21anc 1248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ ℕ) |
198 | | gcddvds 12106 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
199 | 189, 191,
198 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
200 | 199 | simprd 114 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∥ 𝑀) |
201 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑀) → (𝑥 ∥ 𝑀 ↔ (𝑤 gcd 𝑀) ∥ 𝑀)) |
202 | 201, 4 | elrab2 2923 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑀) ∈ 𝑋 ↔ ((𝑤 gcd 𝑀) ∈ ℕ ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
203 | 197, 200,
202 | sylanbrc 417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ 𝑋) |
204 | 44 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℕ) |
205 | 204 | nnzd 9444 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ∈ ℤ) |
206 | 204 | nnne0d 9032 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑁 ≠ 0) |
207 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑤 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
208 | 207 | necon3ai 2416 |
. . . . . . . . 9
⊢ (𝑁 ≠ 0 → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
209 | 206, 208 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ¬ (𝑤 = 0 ∧ 𝑁 = 0)) |
210 | | gcdn0cl 12105 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑤 = 0 ∧ 𝑁 = 0)) → (𝑤 gcd 𝑁) ∈ ℕ) |
211 | 189, 205,
209, 210 | syl21anc 1248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ ℕ) |
212 | | gcddvds 12106 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
213 | 189, 205,
212 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑁) ∥ 𝑤 ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
214 | 213 | simprd 114 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∥ 𝑁) |
215 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 gcd 𝑁) → (𝑥 ∥ 𝑁 ↔ (𝑤 gcd 𝑁) ∥ 𝑁)) |
216 | 215, 8 | elrab2 2923 |
. . . . . . 7
⊢ ((𝑤 gcd 𝑁) ∈ 𝑌 ↔ ((𝑤 gcd 𝑁) ∈ ℕ ∧ (𝑤 gcd 𝑁) ∥ 𝑁)) |
217 | 211, 214,
216 | sylanbrc 417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ 𝑌) |
218 | 203, 217 | opelxpd 4696 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌)) |
219 | 218 | fvresd 5583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
220 | | df-ov 5925 |
. . . . . . . 8
⊢ ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) |
221 | 197 | nncnd 9001 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑀) ∈ ℂ) |
222 | 211 | nncnd 9001 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd 𝑁) ∈ ℂ) |
223 | 197, 211 | nnmulcld 9036 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) ∈ ℕ) |
224 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑤 gcd 𝑀) → (𝑥 · 𝑦) = ((𝑤 gcd 𝑀) · 𝑦)) |
225 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑤 gcd 𝑁) → ((𝑤 gcd 𝑀) · 𝑦) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
226 | 224, 225,
25 | ovmpog 6057 |
. . . . . . . . 9
⊢ (((𝑤 gcd 𝑀) ∈ ℂ ∧ (𝑤 gcd 𝑁) ∈ ℂ ∧ ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) ∈ ℕ) → ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
227 | 221, 222,
223, 226 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀)(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))(𝑤 gcd 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
228 | 220, 227 | eqtr3id 2243 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
229 | | df-ov 5925 |
. . . . . . . 8
⊢ ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) |
230 | 229 | a1i 9 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
231 | 219, 228,
230 | 3eqtrd 2233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
232 | 110 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑀 gcd 𝑁) = 1) |
233 | | rpmulgcd2 12239 |
. . . . . . . 8
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
234 | 189, 191,
205, 232, 233 | syl31anc 1252 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ((𝑤 gcd 𝑀) · (𝑤 gcd 𝑁))) |
235 | 234, 229 | eqtrdi 2245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = ( · ‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
236 | 186 | simprbi 275 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑍 → 𝑤 ∥ (𝑀 · 𝑁)) |
237 | 236 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 ∥ (𝑀 · 𝑁)) |
238 | 50, 44 | nnmulcld 9036 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 · 𝑁) ∈ ℕ) |
239 | | gcdeq 12166 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℕ ∧ (𝑀 · 𝑁) ∈ ℕ) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
240 | 187, 238,
239 | syl2anr 290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ((𝑤 gcd (𝑀 · 𝑁)) = 𝑤 ↔ 𝑤 ∥ (𝑀 · 𝑁))) |
241 | 237, 240 | mpbird 167 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → (𝑤 gcd (𝑀 · 𝑁)) = 𝑤) |
242 | 231, 235,
241 | 3eqtr2rd 2236 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → 𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
243 | | fveq2 5558 |
. . . . . 6
⊢ (𝑢 = 〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢) = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) |
244 | 243 | rspceeqv 2886 |
. . . . 5
⊢
((〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉 ∈ (𝑋 × 𝑌) ∧ 𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘〈(𝑤 gcd 𝑀), (𝑤 gcd 𝑁)〉)) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)) |
245 | 218, 242,
244 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)) |
246 | 245 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢)) |
247 | | dffo3 5709 |
. . 3
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑤 ∈ 𝑍 ∃𝑢 ∈ (𝑋 × 𝑌)𝑤 = (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑢))) |
248 | 70, 246, 247 | sylanbrc 417 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
249 | | df-f1o 5265 |
. 2
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 ↔ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1→𝑍 ∧ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍)) |
250 | 184, 248,
249 | sylanbrc 417 |
1
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |