Step | Hyp | Ref
| Expression |
1 | | mpodvdsmulf1o.x |
. . . 4
⊢ 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} |
2 | | mpodvdsmulf1o.1 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | dvdsfi 12383 |
. . . . 5
⊢ (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∈ Fin) |
4 | 2, 3 | syl 14 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀} ∈ Fin) |
5 | 1, 4 | eqeltrid 2283 |
. . 3
⊢ (𝜑 → 𝑋 ∈ Fin) |
6 | | mpodvdsmulf1o.y |
. . . . 5
⊢ 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
7 | | mpodvdsmulf1o.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
8 | | dvdsfi 12383 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
9 | 7, 8 | syl 14 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
10 | 6, 9 | eqeltrid 2283 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Fin) |
11 | | fsumdvdsmul.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) |
12 | 10, 11 | fsumcl 11549 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝑌 𝐵 ∈ ℂ) |
13 | | fsumdvdsmul.4 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝐴 ∈ ℂ) |
14 | 5, 12, 13 | fsummulc1 11598 |
. 2
⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑗 ∈ 𝑋 (𝐴 · Σ𝑘 ∈ 𝑌 𝐵)) |
15 | 10 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑌 ∈ Fin) |
16 | 11 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → 𝐵 ∈ ℂ) |
17 | 15, 13, 16 | fsummulc2 11597 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑘 ∈ 𝑌 (𝐴 · 𝐵)) |
18 | | fsumdvdsmul.6 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) = 𝐷) |
19 | 18 | anassrs 400 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → (𝐴 · 𝐵) = 𝐷) |
20 | 19 | sumeq2dv 11517 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → Σ𝑘 ∈ 𝑌 (𝐴 · 𝐵) = Σ𝑘 ∈ 𝑌 𝐷) |
21 | 17, 20 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑘 ∈ 𝑌 𝐷) |
22 | 21 | sumeq2dv 11517 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 (𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷) |
23 | | elxpi 4679 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑋 × 𝑌) → ∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) |
24 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢
(〈𝑢, 𝑣〉 = 𝑧 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧)) |
25 | 24 | eqcoms 2199 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧)) |
26 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢
(〈𝑢, 𝑣〉 = 𝑧 → ( · ‘〈𝑢, 𝑣〉) = ( · ‘𝑧)) |
27 | 26 | eqcoms 2199 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ( · ‘〈𝑢, 𝑣〉) = ( · ‘𝑧)) |
28 | 25, 27 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) = ( · ‘〈𝑢, 𝑣〉) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))) |
29 | 28 | biimpd 144 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) = ( · ‘〈𝑢, 𝑣〉) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))) |
30 | 1 | ssrab3 3269 |
. . . . . . . . . . . 12
⊢ 𝑋 ⊆
ℕ |
31 | | nnsscn 8992 |
. . . . . . . . . . . 12
⊢ ℕ
⊆ ℂ |
32 | 30, 31 | sstri 3192 |
. . . . . . . . . . 11
⊢ 𝑋 ⊆
ℂ |
33 | 32 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑋 → 𝑢 ∈ ℂ) |
34 | 6 | ssrab3 3269 |
. . . . . . . . . . . 12
⊢ 𝑌 ⊆
ℕ |
35 | 34, 31 | sstri 3192 |
. . . . . . . . . . 11
⊢ 𝑌 ⊆
ℂ |
36 | 35 | sseli 3179 |
. . . . . . . . . 10
⊢ (𝑣 ∈ 𝑌 → 𝑣 ∈ ℂ) |
37 | | mulcl 8004 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) |
38 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
39 | | oveq2 5930 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
40 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) |
41 | 38, 39, 40 | ovmpog 6057 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ∧ (𝑢 · 𝑣) ∈ ℂ) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣)) |
42 | 37, 41 | mpd3an3 1349 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣)) |
43 | | df-ov 5925 |
. . . . . . . . . . 11
⊢ (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) |
44 | | df-ov 5925 |
. . . . . . . . . . 11
⊢ (𝑢 · 𝑣) = ( · ‘〈𝑢, 𝑣〉) |
45 | 42, 43, 44 | 3eqtr3g 2252 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) = ( · ‘〈𝑢, 𝑣〉)) |
46 | 33, 36, 45 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘〈𝑢, 𝑣〉) = ( · ‘〈𝑢, 𝑣〉)) |
47 | 29, 46 | impel 280 |
. . . . . . . 8
⊢ ((𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)) |
48 | 47 | exlimivv 1911 |
. . . . . . 7
⊢
(∃𝑢∃𝑣(𝑧 = 〈𝑢, 𝑣〉 ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)) |
49 | 23, 48 | syl 14 |
. . . . . 6
⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)) |
50 | 49 | eqcomd 2202 |
. . . . 5
⊢ (𝑧 ∈ (𝑋 × 𝑌) → ( · ‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧)) |
51 | 50 | csbeq1d 3091 |
. . . 4
⊢ (𝑧 ∈ (𝑋 × 𝑌) → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶) |
52 | 51 | sumeq2i 11513 |
. . 3
⊢
Σ𝑧 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑧) / 𝑖⦌𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 |
53 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝑗 ∈ 𝑋) |
54 | 30, 53 | sselid 3181 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝑗 ∈ ℕ) |
55 | | simprr 531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝑘 ∈ 𝑌) |
56 | 34, 55 | sselid 3181 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝑘 ∈ ℕ) |
57 | 54, 56 | nnmulcld 9036 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝑗 · 𝑘) ∈ ℕ) |
58 | | fsumdvdsmul.7 |
. . . . . . . . 9
⊢ (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷) |
59 | 58 | adantl 277 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) ∧ 𝑖 = (𝑗 · 𝑘)) → 𝐶 = 𝐷) |
60 | 57, 59 | csbied 3131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶 = 𝐷) |
61 | | anass 401 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) ↔ (𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌))) |
62 | 61 | bicomi 132 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌)) |
63 | | eqcom 2198 |
. . . . . . 7
⊢
(⦋(𝑗
· 𝑘) / 𝑖⦌𝐶 = 𝐷 ↔ 𝐷 = ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
64 | 60, 62, 63 | 3imtr3i 200 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋) ∧ 𝑘 ∈ 𝑌) → 𝐷 = ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
65 | 64 | sumeq2dv 11517 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑘 ∈ 𝑌 ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
66 | 65 | sumeq2dv 11517 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
67 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ( · ‘𝑧) = ( ·
‘〈𝑗, 𝑘〉)) |
68 | | df-ov 5925 |
. . . . . . 7
⊢ (𝑗 · 𝑘) = ( · ‘〈𝑗, 𝑘〉) |
69 | 67, 68 | eqtr4di 2247 |
. . . . . 6
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ( · ‘𝑧) = (𝑗 · 𝑘)) |
70 | 69 | csbeq1d 3091 |
. . . . 5
⊢ (𝑧 = 〈𝑗, 𝑘〉 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶) |
71 | 13 | adantrr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐴 ∈ ℂ) |
72 | 11 | adantrl 478 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐵 ∈ ℂ) |
73 | 71, 72 | mulcld 8045 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → (𝐴 · 𝐵) ∈ ℂ) |
74 | 18, 73 | eqeltrrd 2274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → 𝐷 ∈ ℂ) |
75 | 60, 74 | eqeltrd 2273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑋 ∧ 𝑘 ∈ 𝑌)) → ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶 ∈ ℂ) |
76 | 70, 5, 10, 75 | fsumxp 11585 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
77 | 66, 76 | eqtrd 2229 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶) |
78 | | nfcv 2339 |
. . . . 5
⊢
Ⅎ𝑤𝐶 |
79 | | nfcsb1v 3117 |
. . . . 5
⊢
Ⅎ𝑖⦋𝑤 / 𝑖⦌𝐶 |
80 | | csbeq1a 3093 |
. . . . 5
⊢ (𝑖 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑖⦌𝐶) |
81 | 78, 79, 80 | cbvsumi 11511 |
. . . 4
⊢
Σ𝑖 ∈
𝑍 𝐶 = Σ𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 |
82 | | csbeq1 3087 |
. . . . 5
⊢ (𝑤 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) → ⦋𝑤 / 𝑖⦌𝐶 = ⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶) |
83 | | xpfi 6991 |
. . . . . 6
⊢ ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin) |
84 | 5, 10, 83 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑌) ∈ Fin) |
85 | | mpodvdsmulf1o.3 |
. . . . . 6
⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
86 | | mpodvdsmulf1o.z |
. . . . . 6
⊢ 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)} |
87 | 2, 7, 85, 1, 6, 86 | mpodvdsmulf1o 15198 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍) |
88 | | fvres 5582 |
. . . . . 6
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧)) |
89 | 88 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 × 𝑌)) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧)) |
90 | 75 | ralrimivva 2579 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ 𝑋 ∀𝑘 ∈ 𝑌 ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶 ∈ ℂ) |
91 | 70 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑗, 𝑘〉 → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶 ∈ ℂ)) |
92 | 91 | ralxp 4809 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑗 ∈ 𝑋 ∀𝑘 ∈ 𝑌 ⦋(𝑗 · 𝑘) / 𝑖⦌𝐶 ∈ ℂ) |
93 | 90, 92 | sylibr 134 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)⦋( · ‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
94 | | fveq2 5558 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → ( · ‘𝑧) = ( · ‘𝑤)) |
95 | 94 | csbeq1d 3091 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋( · ‘𝑤) / 𝑖⦌𝐶) |
96 | 95 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ⦋(
· ‘𝑤) / 𝑖⦌𝐶 ∈ ℂ)) |
97 | 96 | cbvralvw 2733 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ (𝑋 × 𝑌)⦋( · ‘𝑤) / 𝑖⦌𝐶 ∈ ℂ) |
98 | | id 19 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌)) |
99 | 95 | eqcoms 2199 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋( · ‘𝑤) / 𝑖⦌𝐶) |
100 | 99 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → ⦋( ·
‘𝑧) / 𝑖⦌𝐶 = ⦋( · ‘𝑤) / 𝑖⦌𝐶) |
101 | 100 | eleq1d 2265 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ⦋(
· ‘𝑤) / 𝑖⦌𝐶 ∈ ℂ)) |
102 | 51 | eleq1d 2265 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔
⦋((𝑥 ∈
ℂ, 𝑦 ∈ ℂ
↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
103 | 102 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔
⦋((𝑥 ∈
ℂ, 𝑦 ∈ ℂ
↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
104 | 101, 103 | bitr3d 190 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (⦋( ·
‘𝑤) / 𝑖⦌𝐶 ∈ ℂ ↔
⦋((𝑥 ∈
ℂ, 𝑦 ∈ ℂ
↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
105 | 98, 104 | rspcdv 2871 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (∀𝑤 ∈ (𝑋 × 𝑌)⦋( · ‘𝑤) / 𝑖⦌𝐶 ∈ ℂ →
⦋((𝑥 ∈
ℂ, 𝑦 ∈ ℂ
↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
106 | 105 | com12 30 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑤) / 𝑖⦌𝐶 ∈ ℂ → (𝑧 ∈ (𝑋 × 𝑌) → ⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
107 | 106 | ralrimiv 2569 |
. . . . . . . . 9
⊢
(∀𝑤 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑤) / 𝑖⦌𝐶 ∈ ℂ → ∀𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
108 | 97, 107 | sylbi 121 |
. . . . . . . 8
⊢
(∀𝑧 ∈
(𝑋 × 𝑌)⦋( ·
‘𝑧) / 𝑖⦌𝐶 ∈ ℂ → ∀𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
109 | 93, 108 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
110 | | mpomulf 8014 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ ×
ℂ)⟶ℂ |
111 | | ffn 5407 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
→ (𝑥 ∈ ℂ,
𝑦 ∈ ℂ ↦
(𝑥 · 𝑦)) Fn (ℂ ×
ℂ)) |
112 | 110, 111 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ ×
ℂ) |
113 | | xpss12 4770 |
. . . . . . . . . 10
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
114 | 32, 35, 113 | mp2an 426 |
. . . . . . . . 9
⊢ (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ) |
115 | 82 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑤 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) → (⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔
⦋((𝑥 ∈
ℂ, 𝑦 ∈ ℂ
↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
116 | 115 | ralima 5802 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) →
(∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ)) |
117 | 112, 114,
116 | mp2an 426 |
. . . . . . . 8
⊢
(∀𝑤 ∈
((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ) |
118 | | df-ima 4676 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌)) = ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) |
119 | | f1ofo 5511 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto→𝑍 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍) |
120 | | forn 5483 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto→𝑍 → ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) = 𝑍) |
121 | 87, 119, 120 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) = 𝑍) |
122 | 118, 121 | eqtrid 2241 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌)) = 𝑍) |
123 | 122 | raleqdv 2699 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ)) |
124 | 117, 123 | bitr3id 194 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶 ∈ ℂ ↔ ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ)) |
125 | 109, 124 | mpbid 147 |
. . . . . 6
⊢ (𝜑 → ∀𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ) |
126 | 125 | r19.21bi 2585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑍) → ⦋𝑤 / 𝑖⦌𝐶 ∈ ℂ) |
127 | 82, 84, 87, 89, 126 | fsumf1o 11539 |
. . . 4
⊢ (𝜑 → Σ𝑤 ∈ 𝑍 ⦋𝑤 / 𝑖⦌𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶) |
128 | 81, 127 | eqtrid 2241 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ 𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)⦋((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖⦌𝐶) |
129 | 52, 77, 128 | 3eqtr4a 2255 |
. 2
⊢ (𝜑 → Σ𝑗 ∈ 𝑋 Σ𝑘 ∈ 𝑌 𝐷 = Σ𝑖 ∈ 𝑍 𝐶) |
130 | 14, 22, 129 | 3eqtrd 2233 |
1
⊢ (𝜑 → (Σ𝑗 ∈ 𝑋 𝐴 · Σ𝑘 ∈ 𝑌 𝐵) = Σ𝑖 ∈ 𝑍 𝐶) |