ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumdvdsmul GIF version

Theorem fsumdvdsmul 15650
Description: Product of two divisor sums. (This is also the main part of the proof that "Σ𝑘𝑁𝐹(𝑘) is a multiplicative function if 𝐹 is".) (Contributed by Mario Carneiro, 2-Jul-2015.) Avoid ax-mulf 8110. (Revised by GG, 18-Apr-2025.)
Hypotheses
Ref Expression
mpodvdsmulf1o.1 (𝜑𝑀 ∈ ℕ)
mpodvdsmulf1o.2 (𝜑𝑁 ∈ ℕ)
mpodvdsmulf1o.3 (𝜑 → (𝑀 gcd 𝑁) = 1)
mpodvdsmulf1o.x 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
mpodvdsmulf1o.y 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
mpodvdsmulf1o.z 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
fsumdvdsmul.4 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
fsumdvdsmul.5 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
fsumdvdsmul.6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
fsumdvdsmul.7 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
Assertion
Ref Expression
fsumdvdsmul (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Distinct variable groups:   𝑥,𝑖,𝑗,𝑘   𝑥,𝑀   𝑥,𝑁   𝑖,𝑋,𝑗   𝑖,𝑌,𝑗   𝑖,𝑍,𝑗   𝜑,𝑖,𝑗   𝑘,𝑋   𝑘,𝑌   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗,𝑘   𝐷,𝑖   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑘)   𝐶(𝑥,𝑖)   𝐷(𝑥,𝑗,𝑘)   𝑀(𝑖,𝑗,𝑘)   𝑁(𝑖,𝑗,𝑘)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥,𝑘)

Proof of Theorem fsumdvdsmul
Dummy variables 𝑦 𝑧 𝑤 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpodvdsmulf1o.x . . . 4 𝑋 = {𝑥 ∈ ℕ ∣ 𝑥𝑀}
2 mpodvdsmulf1o.1 . . . . 5 (𝜑𝑀 ∈ ℕ)
3 dvdsfi 12747 . . . . 5 (𝑀 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∈ Fin)
42, 3syl 14 . . . 4 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑀} ∈ Fin)
51, 4eqeltrid 2316 . . 3 (𝜑𝑋 ∈ Fin)
6 mpodvdsmulf1o.y . . . . 5 𝑌 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
7 mpodvdsmulf1o.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
8 dvdsfi 12747 . . . . . 6 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
97, 8syl 14 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
106, 9eqeltrid 2316 . . . 4 (𝜑𝑌 ∈ Fin)
11 fsumdvdsmul.5 . . . 4 ((𝜑𝑘𝑌) → 𝐵 ∈ ℂ)
1210, 11fsumcl 11897 . . 3 (𝜑 → Σ𝑘𝑌 𝐵 ∈ ℂ)
13 fsumdvdsmul.4 . . 3 ((𝜑𝑗𝑋) → 𝐴 ∈ ℂ)
145, 12, 13fsummulc1 11946 . 2 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵))
1510adantr 276 . . . . 5 ((𝜑𝑗𝑋) → 𝑌 ∈ Fin)
1611adantlr 477 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐵 ∈ ℂ)
1715, 13, 16fsummulc2 11945 . . . 4 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 (𝐴 · 𝐵))
18 fsumdvdsmul.6 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) = 𝐷)
1918anassrs 400 . . . . 5 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → (𝐴 · 𝐵) = 𝐷)
2019sumeq2dv 11865 . . . 4 ((𝜑𝑗𝑋) → Σ𝑘𝑌 (𝐴 · 𝐵) = Σ𝑘𝑌 𝐷)
2117, 20eqtrd 2262 . . 3 ((𝜑𝑗𝑋) → (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑘𝑌 𝐷)
2221sumeq2dv 11865 . 2 (𝜑 → Σ𝑗𝑋 (𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑗𝑋 Σ𝑘𝑌 𝐷)
23 elxpi 4732 . . . . . . 7 (𝑧 ∈ (𝑋 × 𝑌) → ∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢𝑋𝑣𝑌)))
24 fveq2 5623 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ = 𝑧 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
2524eqcoms 2232 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
26 fveq2 5623 . . . . . . . . . . . 12 (⟨𝑢, 𝑣⟩ = 𝑧 → ( · ‘⟨𝑢, 𝑣⟩) = ( · ‘𝑧))
2726eqcoms 2232 . . . . . . . . . . 11 (𝑧 = ⟨𝑢, 𝑣⟩ → ( · ‘⟨𝑢, 𝑣⟩) = ( · ‘𝑧))
2825, 27eqeq12d 2244 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)))
2928biimpd 144 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧)))
301ssrab3 3310 . . . . . . . . . . . 12 𝑋 ⊆ ℕ
31 nnsscn 9103 . . . . . . . . . . . 12 ℕ ⊆ ℂ
3230, 31sstri 3233 . . . . . . . . . . 11 𝑋 ⊆ ℂ
3332sseli 3220 . . . . . . . . . 10 (𝑢𝑋𝑢 ∈ ℂ)
346ssrab3 3310 . . . . . . . . . . . 12 𝑌 ⊆ ℕ
3534, 31sstri 3233 . . . . . . . . . . 11 𝑌 ⊆ ℂ
3635sseli 3220 . . . . . . . . . 10 (𝑣𝑌𝑣 ∈ ℂ)
37 mulcl 8114 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
38 oveq1 6001 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
39 oveq2 6002 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
40 eqid 2229 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))
4138, 39, 40ovmpog 6130 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ ∧ (𝑢 · 𝑣) ∈ ℂ) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
4237, 41mpd3an3 1372 . . . . . . . . . . 11 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣))
43 df-ov 5997 . . . . . . . . . . 11 (𝑢(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))𝑣) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩)
44 df-ov 5997 . . . . . . . . . . 11 (𝑢 · 𝑣) = ( · ‘⟨𝑢, 𝑣⟩)
4542, 43, 443eqtr3g 2285 . . . . . . . . . 10 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩))
4633, 36, 45syl2an 289 . . . . . . . . 9 ((𝑢𝑋𝑣𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘⟨𝑢, 𝑣⟩) = ( · ‘⟨𝑢, 𝑣⟩))
4729, 46impel 280 . . . . . . . 8 ((𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢𝑋𝑣𝑌)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))
4847exlimivv 1943 . . . . . . 7 (∃𝑢𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢𝑋𝑣𝑌)) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))
4923, 48syl 14 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) = ( · ‘𝑧))
5049eqcomd 2235 . . . . 5 (𝑧 ∈ (𝑋 × 𝑌) → ( · ‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
5150csbeq1d 3131 . . . 4 (𝑧 ∈ (𝑋 × 𝑌) → ( · ‘𝑧) / 𝑖𝐶 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
5251sumeq2i 11861 . . 3 Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶
53 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝑗𝑋)
5430, 53sselid 3222 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝑗 ∈ ℕ)
55 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝑘𝑌)
5634, 55sselid 3222 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝑘 ∈ ℕ)
5754, 56nnmulcld 9147 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝑗 · 𝑘) ∈ ℕ)
58 fsumdvdsmul.7 . . . . . . . . 9 (𝑖 = (𝑗 · 𝑘) → 𝐶 = 𝐷)
5958adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑗𝑋𝑘𝑌)) ∧ 𝑖 = (𝑗 · 𝑘)) → 𝐶 = 𝐷)
6057, 59csbied 3171 . . . . . . 7 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝑗 · 𝑘) / 𝑖𝐶 = 𝐷)
61 anass 401 . . . . . . . 8 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) ↔ (𝜑 ∧ (𝑗𝑋𝑘𝑌)))
6261bicomi 132 . . . . . . 7 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) ↔ ((𝜑𝑗𝑋) ∧ 𝑘𝑌))
63 eqcom 2231 . . . . . . 7 ((𝑗 · 𝑘) / 𝑖𝐶 = 𝐷𝐷 = (𝑗 · 𝑘) / 𝑖𝐶)
6460, 62, 633imtr3i 200 . . . . . 6 (((𝜑𝑗𝑋) ∧ 𝑘𝑌) → 𝐷 = (𝑗 · 𝑘) / 𝑖𝐶)
6564sumeq2dv 11865 . . . . 5 ((𝜑𝑗𝑋) → Σ𝑘𝑌 𝐷 = Σ𝑘𝑌 (𝑗 · 𝑘) / 𝑖𝐶)
6665sumeq2dv 11865 . . . 4 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑗𝑋 Σ𝑘𝑌 (𝑗 · 𝑘) / 𝑖𝐶)
67 fveq2 5623 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = ( · ‘⟨𝑗, 𝑘⟩))
68 df-ov 5997 . . . . . . 7 (𝑗 · 𝑘) = ( · ‘⟨𝑗, 𝑘⟩)
6967, 68eqtr4di 2280 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) = (𝑗 · 𝑘))
7069csbeq1d 3131 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → ( · ‘𝑧) / 𝑖𝐶 = (𝑗 · 𝑘) / 𝑖𝐶)
7113adantrr 479 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐴 ∈ ℂ)
7211adantrl 478 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐵 ∈ ℂ)
7371, 72mulcld 8155 . . . . . . 7 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝐴 · 𝐵) ∈ ℂ)
7418, 73eqeltrrd 2307 . . . . . 6 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → 𝐷 ∈ ℂ)
7560, 74eqeltrd 2306 . . . . 5 ((𝜑 ∧ (𝑗𝑋𝑘𝑌)) → (𝑗 · 𝑘) / 𝑖𝐶 ∈ ℂ)
7670, 5, 10, 75fsumxp 11933 . . . 4 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 (𝑗 · 𝑘) / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
7766, 76eqtrd 2262 . . 3 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶)
78 nfcv 2372 . . . . 5 𝑤𝐶
79 nfcsb1v 3157 . . . . 5 𝑖𝑤 / 𝑖𝐶
80 csbeq1a 3133 . . . . 5 (𝑖 = 𝑤𝐶 = 𝑤 / 𝑖𝐶)
8178, 79, 80cbvsumi 11859 . . . 4 Σ𝑖𝑍 𝐶 = Σ𝑤𝑍 𝑤 / 𝑖𝐶
82 csbeq1 3127 . . . . 5 (𝑤 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) → 𝑤 / 𝑖𝐶 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
83 xpfi 7082 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌 ∈ Fin) → (𝑋 × 𝑌) ∈ Fin)
845, 10, 83syl2anc 411 . . . . 5 (𝜑 → (𝑋 × 𝑌) ∈ Fin)
85 mpodvdsmulf1o.3 . . . . . 6 (𝜑 → (𝑀 gcd 𝑁) = 1)
86 mpodvdsmulf1o.z . . . . . 6 𝑍 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑀 · 𝑁)}
872, 7, 85, 1, 6, 86mpodvdsmulf1o 15649 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍)
88 fvres 5647 . . . . . 6 (𝑧 ∈ (𝑋 × 𝑌) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
8988adantl 277 . . . . 5 ((𝜑𝑧 ∈ (𝑋 × 𝑌)) → (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))‘𝑧) = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧))
9075ralrimivva 2612 . . . . . . . . 9 (𝜑 → ∀𝑗𝑋𝑘𝑌 (𝑗 · 𝑘) / 𝑖𝐶 ∈ ℂ)
9170eleq1d 2298 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ (𝑗 · 𝑘) / 𝑖𝐶 ∈ ℂ))
9291ralxp 4862 . . . . . . . . 9 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑗𝑋𝑘𝑌 (𝑗 · 𝑘) / 𝑖𝐶 ∈ ℂ)
9390, 92sylibr 134 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ)
94 fveq2 5623 . . . . . . . . . . . 12 (𝑧 = 𝑤 → ( · ‘𝑧) = ( · ‘𝑤))
9594csbeq1d 3131 . . . . . . . . . . 11 (𝑧 = 𝑤( · ‘𝑧) / 𝑖𝐶 = ( · ‘𝑤) / 𝑖𝐶)
9695eleq1d 2298 . . . . . . . . . 10 (𝑧 = 𝑤 → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑤) / 𝑖𝐶 ∈ ℂ))
9796cbvralvw 2769 . . . . . . . . 9 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ)
98 id 19 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 ∈ (𝑋 × 𝑌))
9995eqcoms 2232 . . . . . . . . . . . . . . 15 (𝑤 = 𝑧( · ‘𝑧) / 𝑖𝐶 = ( · ‘𝑤) / 𝑖𝐶)
10099adantl 277 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → ( · ‘𝑧) / 𝑖𝐶 = ( · ‘𝑤) / 𝑖𝐶)
101100eleq1d 2298 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ( · ‘𝑤) / 𝑖𝐶 ∈ ℂ))
10251eleq1d 2298 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑌) → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
103102adantr 276 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (( · ‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
104101, 103bitr3d 190 . . . . . . . . . . . 12 ((𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑤 = 𝑧) → (( · ‘𝑤) / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
10598, 104rspcdv 2910 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑌) → (∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
106105com12 30 . . . . . . . . . 10 (∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ → (𝑧 ∈ (𝑋 × 𝑌) → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
107106ralrimiv 2602 . . . . . . . . 9 (∀𝑤 ∈ (𝑋 × 𝑌)( · ‘𝑤) / 𝑖𝐶 ∈ ℂ → ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
10897, 107sylbi 121 . . . . . . . 8 (∀𝑧 ∈ (𝑋 × 𝑌)( · ‘𝑧) / 𝑖𝐶 ∈ ℂ → ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
10993, 108syl 14 . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
110 mpomulf 8124 . . . . . . . . . 10 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ
111 ffn 5469 . . . . . . . . . 10 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ → (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ))
112110, 111ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ)
113 xpss12 4823 . . . . . . . . . 10 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
11432, 35, 113mp2an 426 . . . . . . . . 9 (𝑋 × 𝑌) ⊆ (ℂ × ℂ)
11582eleq1d 2298 . . . . . . . . . 10 (𝑤 = ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) → (𝑤 / 𝑖𝐶 ∈ ℂ ↔ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
116115ralima 5872 . . . . . . . . 9 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) Fn (ℂ × ℂ) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ))
117112, 114, 116mp2an 426 . . . . . . . 8 (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ)
118 df-ima 4729 . . . . . . . . . 10 ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌)) = ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌))
119 f1ofo 5575 . . . . . . . . . . 11 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–1-1-onto𝑍 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍)
120 forn 5547 . . . . . . . . . . 11 (((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)–onto𝑍 → ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) = 𝑍)
12187, 119, 1203syl 17 . . . . . . . . . 10 (𝜑 → ran ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) ↾ (𝑋 × 𝑌)) = 𝑍)
122118, 121eqtrid 2274 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌)) = 𝑍)
123122raleqdv 2734 . . . . . . . 8 (𝜑 → (∀𝑤 ∈ ((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) “ (𝑋 × 𝑌))𝑤 / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
124117, 123bitr3id 194 . . . . . . 7 (𝜑 → (∀𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶 ∈ ℂ ↔ ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ))
125109, 124mpbid 147 . . . . . 6 (𝜑 → ∀𝑤𝑍 𝑤 / 𝑖𝐶 ∈ ℂ)
126125r19.21bi 2618 . . . . 5 ((𝜑𝑤𝑍) → 𝑤 / 𝑖𝐶 ∈ ℂ)
12782, 84, 87, 89, 126fsumf1o 11887 . . . 4 (𝜑 → Σ𝑤𝑍 𝑤 / 𝑖𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
12881, 127eqtrid 2274 . . 3 (𝜑 → Σ𝑖𝑍 𝐶 = Σ𝑧 ∈ (𝑋 × 𝑌)((𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))‘𝑧) / 𝑖𝐶)
12952, 77, 1283eqtr4a 2288 . 2 (𝜑 → Σ𝑗𝑋 Σ𝑘𝑌 𝐷 = Σ𝑖𝑍 𝐶)
13014, 22, 1293eqtrd 2266 1 (𝜑 → (Σ𝑗𝑋 𝐴 · Σ𝑘𝑌 𝐵) = Σ𝑖𝑍 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  {crab 2512  csb 3124  wss 3197  cop 3669   class class class wbr 4082   × cxp 4714  ran crn 4717  cres 4718  cima 4719   Fn wfn 5309  wf 5310  ontowfo 5312  1-1-ontowf1o 5313  cfv 5314  (class class class)co 5994  cmpo 5996  Fincfn 6877  cc 7985  1c1 7988   · cmul 7992  cn 9098  Σcsu 11850  cdvds 12284   gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-dvds 12285  df-gcd 12461
This theorem is referenced by:  sgmmul  15655
  Copyright terms: Public domain W3C validator