ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatfvalfi GIF version

Theorem ccatfvalfi 11023
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfvalfi ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem ccatfvalfi
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2782 . . 3 (𝑆 ∈ Fin → 𝑆 ∈ V)
21adantr 276 . 2 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → 𝑆 ∈ V)
3 elex 2782 . . 3 (𝑇 ∈ Fin → 𝑇 ∈ V)
43adantl 277 . 2 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → 𝑇 ∈ V)
5 0zd 9366 . . . 4 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → 0 ∈ ℤ)
6 hashcl 10907 . . . . . . 7 (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0)
76adantr 276 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (♯‘𝑆) ∈ ℕ0)
8 hashcl 10907 . . . . . . 7 (𝑇 ∈ Fin → (♯‘𝑇) ∈ ℕ0)
98adantl 277 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (♯‘𝑇) ∈ ℕ0)
107, 9nn0addcld 9334 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1110nn0zd 9475 . . . 4 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
12 fzofig 10558 . . . 4 ((0 ∈ ℤ ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ) → (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ Fin)
135, 11, 12syl2anc 411 . . 3 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ Fin)
1413mptexd 5801 . 2 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V)
15 fveq2 5570 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
1615oveq1d 5949 . . . . 5 (𝑠 = 𝑆 → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑡)))
1716oveq2d 5950 . . . 4 (𝑠 = 𝑆 → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑡))))
1815oveq2d 5950 . . . . . 6 (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆)))
1918eleq2d 2274 . . . . 5 (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
20 fveq1 5569 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
2115oveq2d 5950 . . . . . 6 (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
2221fveq2d 5574 . . . . 5 (𝑠 = 𝑆 → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑡‘(𝑥 − (♯‘𝑆))))
2319, 20, 22ifbieq12d 3596 . . . 4 (𝑠 = 𝑆 → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑡‘(𝑥 − (♯‘𝑆)))))
2417, 23mpteq12dv 4125 . . 3 (𝑠 = 𝑆 → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑡‘(𝑥 − (♯‘𝑆))))))
25 fveq2 5570 . . . . . 6 (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇))
2625oveq2d 5950 . . . . 5 (𝑡 = 𝑇 → ((♯‘𝑆) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇)))
2726oveq2d 5950 . . . 4 (𝑡 = 𝑇 → (0..^((♯‘𝑆) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
28 fveq1 5569 . . . . 5 (𝑡 = 𝑇 → (𝑡‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝑥 − (♯‘𝑆))))
2928ifeq2d 3588 . . . 4 (𝑡 = 𝑇 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑡‘(𝑥 − (♯‘𝑆)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
3027, 29mpteq12dv 4125 . . 3 (𝑡 = 𝑇 → (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑡‘(𝑥 − (♯‘𝑆))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
31 df-concat 11022 . . 3 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
3224, 30, 31ovmpog 6070 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V ∧ (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
332, 4, 14, 32syl3anc 1249 1 ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  ifcif 3570  cmpt 4104  cfv 5268  (class class class)co 5934  Fincfn 6817  0cc0 7907   + caddc 7910  cmin 8225  0cn0 9277  cz 9354  ..^cfzo 10246  chash 10901   ++ cconcat 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247  df-ihash 10902  df-concat 11022
This theorem is referenced by:  ccatcl  11024  ccatlen  11026  ccatval1  11028  ccatval2  11029  ccatvalfn  11032
  Copyright terms: Public domain W3C validator