| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul2lt0lgt0 | GIF version | ||
| Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
| Ref | Expression |
|---|---|
| mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Ref | Expression |
|---|---|
| mul2lt0lgt0 | ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 < 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 2 | mul2lt0.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 2 | recnd 8053 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 4 | 1 | recnd 8053 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 5 | 3, 4 | mulcomd 8046 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| 6 | mul2lt0.3 | . . 3 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
| 7 | 5, 6 | eqbrtrrd 4057 | . 2 ⊢ (𝜑 → (𝐵 · 𝐴) < 0) |
| 8 | 1, 2, 7 | mul2lt0rgt0 9832 | 1 ⊢ ((𝜑 ∧ 0 < 𝐴) → 𝐵 < 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7876 0cc0 7877 · cmul 7882 < clt 8059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8061 df-mnf 8062 df-ltxr 8064 df-sub 8197 df-neg 8198 df-rp 9726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |