ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcp1n GIF version

Theorem bcp1n 10300
Description: The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1n (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))

Proof of Theorem bcp1n
StepHypRef Expression
1 elfz3nn0 9678 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
2 facp1 10269 . . . . 5 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
31, 2syl 14 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
4 fznn0sub 9620 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
5 facp1 10269 . . . . . . . 8 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
64, 5syl 14 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
71nn0cnd 8826 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
8 1cnd 7601 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 1 ∈ ℂ)
9 elfznn0 9677 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109nn0cnd 8826 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
117, 8, 10addsubd 7911 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
1211fveq2d 5344 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = (!‘((𝑁𝐾) + 1)))
1311oveq2d 5706 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
146, 12, 133eqtr4d 2137 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)))
1514oveq1d 5705 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)))
164faccld 10275 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
1716nncnd 8534 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
18 nn0p1nn 8810 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
194, 18syl 14 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
2011, 19eqeltrd 2171 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
2120nncnd 8534 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
229faccld 10275 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
2322nncnd 8534 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
2417, 21, 23mul32d 7732 . . . . 5 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
2515, 24eqtrd 2127 . . . 4 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
263, 25oveq12d 5708 . . 3 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
271faccld 10275 . . . . 5 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℕ)
2827nncnd 8534 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ)
2916, 22nnmulcld 8569 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
3029nncnd 8534 . . . 4 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
31 nn0p1nn 8810 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
321, 31syl 14 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℕ)
3332nncnd 8534 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
3429nnap0d 8566 . . . 4 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) # 0)
3520nnap0d 8566 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) # 0)
3628, 30, 33, 21, 34, 35divmuldivapd 8396 . . 3 (𝐾 ∈ (0...𝑁) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
3726, 36eqtr4d 2130 . 2 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
38 fzelp1 9637 . . 3 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
39 bcval2 10289 . . 3 (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
4038, 39syl 14 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
41 bcval2 10289 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
4241oveq1d 5705 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
4337, 40, 423eqtr4d 2137 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wcel 1445  cfv 5049  (class class class)co 5690  0cc0 7447  1c1 7448   + caddc 7450   · cmul 7452  cmin 7750   / cdiv 8236  cn 8520  0cn0 8771  ...cfz 9573  !cfa 10264  Ccbc 10286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-fz 9574  df-iseq 10002  df-seq3 10003  df-fac 10265  df-bc 10287
This theorem is referenced by:  bcp1nk  10301  bcpasc  10305
  Copyright terms: Public domain W3C validator