ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faccl GIF version

Theorem faccl 10708
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
Assertion
Ref Expression
faccl (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)

Proof of Theorem faccl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5514 . . 3 (𝑗 = 0 → (!‘𝑗) = (!‘0))
21eleq1d 2246 . 2 (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ))
3 fveq2 5514 . . 3 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
43eleq1d 2246 . 2 (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ))
5 fveq2 5514 . . 3 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
65eleq1d 2246 . 2 (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ))
7 fveq2 5514 . . 3 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
87eleq1d 2246 . 2 (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ))
9 fac0 10701 . . 3 (!‘0) = 1
10 1nn 8926 . . 3 1 ∈ ℕ
119, 10eqeltri 2250 . 2 (!‘0) ∈ ℕ
12 facp1 10703 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
1312adantl 277 . . . 4 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
14 nn0p1nn 9211 . . . . 5 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
15 nnmulcl 8936 . . . . 5 (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ)
1614, 15sylan2 286 . . . 4 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ)
1713, 16eqeltrd 2254 . . 3 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ)
1817expcom 116 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ))
192, 4, 6, 8, 11, 18nn0ind 9363 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5215  (class class class)co 5872  0cc0 7808  1c1 7809   + caddc 7811   · cmul 7813  cn 8915  0cn0 9172  !cfa 10698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-frec 6389  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-n0 9173  df-z 9250  df-uz 9525  df-seqfrec 10441  df-fac 10699
This theorem is referenced by:  faccld  10709  facne0  10710  facdiv  10711  facndiv  10712  facwordi  10713  faclbnd  10714  faclbnd2  10715  faclbnd3  10716  faclbnd6  10717  facubnd  10718  facavg  10719  bcrpcl  10726  bcn0  10728  bcm1k  10733  permnn  10744  4bc2eq6  10747  eftcl  11655  reeftcl  11656  eftabs  11657  ef0lem  11661  ege2le3  11672  efcj  11674  efaddlem  11675  effsumlt  11693  eflegeo  11702  ef01bndlem  11757  eirraplem  11777  dvdsfac  11858  prmfac1  12144  pcfac  12340  prmunb  12352
  Copyright terms: Public domain W3C validator