ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faccl GIF version

Theorem faccl 9977
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
Assertion
Ref Expression
faccl (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)

Proof of Theorem faccl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5252 . . 3 (𝑗 = 0 → (!‘𝑗) = (!‘0))
21eleq1d 2151 . 2 (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ))
3 fveq2 5252 . . 3 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
43eleq1d 2151 . 2 (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ))
5 fveq2 5252 . . 3 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
65eleq1d 2151 . 2 (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ))
7 fveq2 5252 . . 3 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
87eleq1d 2151 . 2 (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ))
9 fac0 9970 . . 3 (!‘0) = 1
10 1nn 8326 . . 3 1 ∈ ℕ
119, 10eqeltri 2155 . 2 (!‘0) ∈ ℕ
12 facp1 9972 . . . . 5 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
1312adantl 271 . . . 4 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
14 nn0p1nn 8603 . . . . 5 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
15 nnmulcl 8336 . . . . 5 (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ)
1614, 15sylan2 280 . . . 4 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ)
1713, 16eqeltrd 2159 . . 3 (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ)
1817expcom 114 . 2 (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ))
192, 4, 6, 8, 11, 18nn0ind 8755 1 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  cfv 4968  (class class class)co 5590  0cc0 7252  1c1 7253   + caddc 7255   · cmul 7257  cn 8315  0cn0 8564  !cfa 9967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-ltadd 7363
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-f1 4973  df-fo 4974  df-f1o 4975  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-1st 5845  df-2nd 5846  df-recs 6001  df-frec 6087  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-inn 8316  df-n0 8565  df-z 8646  df-uz 8914  df-iseq 9740  df-fac 9968
This theorem is referenced by:  faccld  9978  facne0  9979  facdiv  9980  facndiv  9981  facwordi  9982  faclbnd  9983  faclbnd2  9984  faclbnd3  9985  faclbnd6  9986  facubnd  9987  facavg  9988  bcrpcl  9995  bcn0  9997  bcm1k  10002  permnn  10013  4bc2eq6  10016  dvdsfac  10640  prmfac1  10910
  Copyright terms: Public domain W3C validator