| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faccl | GIF version | ||
| Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
| Ref | Expression |
|---|---|
| faccl | ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5626 | . . 3 ⊢ (𝑗 = 0 → (!‘𝑗) = (!‘0)) | |
| 2 | 1 | eleq1d 2298 | . 2 ⊢ (𝑗 = 0 → ((!‘𝑗) ∈ ℕ ↔ (!‘0) ∈ ℕ)) |
| 3 | fveq2 5626 | . . 3 ⊢ (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘)) | |
| 4 | 3 | eleq1d 2298 | . 2 ⊢ (𝑗 = 𝑘 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑘) ∈ ℕ)) |
| 5 | fveq2 5626 | . . 3 ⊢ (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1))) | |
| 6 | 5 | eleq1d 2298 | . 2 ⊢ (𝑗 = (𝑘 + 1) → ((!‘𝑗) ∈ ℕ ↔ (!‘(𝑘 + 1)) ∈ ℕ)) |
| 7 | fveq2 5626 | . . 3 ⊢ (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁)) | |
| 8 | 7 | eleq1d 2298 | . 2 ⊢ (𝑗 = 𝑁 → ((!‘𝑗) ∈ ℕ ↔ (!‘𝑁) ∈ ℕ)) |
| 9 | fac0 10945 | . . 3 ⊢ (!‘0) = 1 | |
| 10 | 1nn 9117 | . . 3 ⊢ 1 ∈ ℕ | |
| 11 | 9, 10 | eqeltri 2302 | . 2 ⊢ (!‘0) ∈ ℕ |
| 12 | facp1 10947 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) | |
| 13 | 12 | adantl 277 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
| 14 | nn0p1nn 9404 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ) | |
| 15 | nnmulcl 9127 | . . . . 5 ⊢ (((!‘𝑘) ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) | |
| 16 | 14, 15 | sylan2 286 | . . . 4 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((!‘𝑘) · (𝑘 + 1)) ∈ ℕ) |
| 17 | 13, 16 | eqeltrd 2306 | . . 3 ⊢ (((!‘𝑘) ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℕ) |
| 18 | 17 | expcom 116 | . 2 ⊢ (𝑘 ∈ ℕ0 → ((!‘𝑘) ∈ ℕ → (!‘(𝑘 + 1)) ∈ ℕ)) |
| 19 | 2, 4, 6, 8, 11, 18 | nn0ind 9557 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 ℕcn 9106 ℕ0cn0 9365 !cfa 10942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-fac 10943 |
| This theorem is referenced by: faccld 10953 facne0 10954 facdiv 10955 facndiv 10956 facwordi 10957 faclbnd 10958 faclbnd2 10959 faclbnd3 10960 faclbnd6 10961 facubnd 10962 facavg 10963 bcrpcl 10970 bcn0 10972 bcm1k 10977 permnn 10988 4bc2eq6 10991 eftcl 12160 reeftcl 12161 eftabs 12162 ef0lem 12166 ege2le3 12177 efcj 12179 efaddlem 12180 effsumlt 12198 eflegeo 12207 ef01bndlem 12262 eirraplem 12283 dvdsfac 12366 prmfac1 12669 pcfac 12868 prmunb 12880 |
| Copyright terms: Public domain | W3C validator |