| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn2m | GIF version | ||
| Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nn2m | ⊢ (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 +o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn 6625 | . . 3 ⊢ 2o ∈ ω | |
| 2 | nnmcom 6593 | . . 3 ⊢ ((2o ∈ ω ∧ 𝐴 ∈ ω) → (2o ·o 𝐴) = (𝐴 ·o 2o)) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 ·o 2o)) |
| 4 | nnm2 6630 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) | |
| 5 | 3, 4 | eqtrd 2239 | 1 ⊢ (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 +o 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ωcom 4651 (class class class)co 5962 2oc2o 6514 +o coa 6517 ·o comu 6518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-2o 6521 df-oadd 6524 df-omul 6525 |
| This theorem is referenced by: nq02m 7608 |
| Copyright terms: Public domain | W3C validator |