ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm2 GIF version

Theorem nnm2 6485
Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnm2 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))

Proof of Theorem nnm2
StepHypRef Expression
1 df-2o 6377 . . 3 2o = suc 1o
21oveq2i 5848 . 2 (𝐴 ·o 2o) = (𝐴 ·o suc 1o)
3 1onn 6480 . . . 4 1o ∈ ω
4 nnmsuc 6437 . . . 4 ((𝐴 ∈ ω ∧ 1o ∈ ω) → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴))
53, 4mpan2 422 . . 3 (𝐴 ∈ ω → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴))
6 nnm1 6484 . . . 4 (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴)
76oveq1d 5852 . . 3 (𝐴 ∈ ω → ((𝐴 ·o 1o) +o 𝐴) = (𝐴 +o 𝐴))
85, 7eqtrd 2197 . 2 (𝐴 ∈ ω → (𝐴 ·o suc 1o) = (𝐴 +o 𝐴))
92, 8syl5eq 2209 1 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1342  wcel 2135  suc csuc 4338  ωcom 4562  (class class class)co 5837  1oc1o 6369  2oc2o 6370   +o coa 6373   ·o comu 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-iord 4339  df-on 4341  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-1o 6376  df-2o 6377  df-oadd 6380  df-omul 6381
This theorem is referenced by:  nn2m  6486
  Copyright terms: Public domain W3C validator