![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnm2 | GIF version |
Description: Multiply an element of ω by 2𝑜 (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnm2 | ⊢ (𝐴 ∈ ω → (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6182 | . . 3 ⊢ 2𝑜 = suc 1𝑜 | |
2 | 1 | oveq2i 5663 | . 2 ⊢ (𝐴 ·𝑜 2𝑜) = (𝐴 ·𝑜 suc 1𝑜) |
3 | 1onn 6279 | . . . 4 ⊢ 1𝑜 ∈ ω | |
4 | nnmsuc 6238 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 1𝑜 ∈ ω) → (𝐴 ·𝑜 suc 1𝑜) = ((𝐴 ·𝑜 1𝑜) +𝑜 𝐴)) | |
5 | 3, 4 | mpan2 416 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ·𝑜 suc 1𝑜) = ((𝐴 ·𝑜 1𝑜) +𝑜 𝐴)) |
6 | nnm1 6283 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·𝑜 1𝑜) = 𝐴) | |
7 | 6 | oveq1d 5667 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 ·𝑜 1𝑜) +𝑜 𝐴) = (𝐴 +𝑜 𝐴)) |
8 | 5, 7 | eqtrd 2120 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ·𝑜 suc 1𝑜) = (𝐴 +𝑜 𝐴)) |
9 | 2, 8 | syl5eq 2132 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ·𝑜 2𝑜) = (𝐴 +𝑜 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 suc csuc 4192 ωcom 4405 (class class class)co 5652 1𝑜c1o 6174 2𝑜c2o 6175 +𝑜 coa 6178 ·𝑜 comu 6179 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-1o 6181 df-2o 6182 df-oadd 6185 df-omul 6186 |
This theorem is referenced by: nn2m 6285 |
Copyright terms: Public domain | W3C validator |