ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm2 GIF version

Theorem nnm2 6526
Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnm2 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))

Proof of Theorem nnm2
StepHypRef Expression
1 df-2o 6417 . . 3 2o = suc 1o
21oveq2i 5885 . 2 (𝐴 ·o 2o) = (𝐴 ·o suc 1o)
3 1onn 6520 . . . 4 1o ∈ ω
4 nnmsuc 6477 . . . 4 ((𝐴 ∈ ω ∧ 1o ∈ ω) → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴))
53, 4mpan2 425 . . 3 (𝐴 ∈ ω → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴))
6 nnm1 6525 . . . 4 (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴)
76oveq1d 5889 . . 3 (𝐴 ∈ ω → ((𝐴 ·o 1o) +o 𝐴) = (𝐴 +o 𝐴))
85, 7eqtrd 2210 . 2 (𝐴 ∈ ω → (𝐴 ·o suc 1o) = (𝐴 +o 𝐴))
92, 8eqtrid 2222 1 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  suc csuc 4365  ωcom 4589  (class class class)co 5874  1oc1o 6409  2oc2o 6410   +o coa 6413   ·o comu 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421
This theorem is referenced by:  nn2m  6527
  Copyright terms: Public domain W3C validator