![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnm2 | GIF version |
Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnm2 | ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6470 | . . 3 ⊢ 2o = suc 1o | |
2 | 1 | oveq2i 5929 | . 2 ⊢ (𝐴 ·o 2o) = (𝐴 ·o suc 1o) |
3 | 1onn 6573 | . . . 4 ⊢ 1o ∈ ω | |
4 | nnmsuc 6530 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 1o ∈ ω) → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴)) | |
5 | 3, 4 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴)) |
6 | nnm1 6578 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) | |
7 | 6 | oveq1d 5933 | . . 3 ⊢ (𝐴 ∈ ω → ((𝐴 ·o 1o) +o 𝐴) = (𝐴 +o 𝐴)) |
8 | 5, 7 | eqtrd 2226 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ·o suc 1o) = (𝐴 +o 𝐴)) |
9 | 2, 8 | eqtrid 2238 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 suc csuc 4396 ωcom 4622 (class class class)co 5918 1oc1o 6462 2oc2o 6463 +o coa 6466 ·o comu 6467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-2o 6470 df-oadd 6473 df-omul 6474 |
This theorem is referenced by: nn2m 6580 |
Copyright terms: Public domain | W3C validator |