ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm2 GIF version

Theorem nnm2 6625
Description: Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnm2 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))

Proof of Theorem nnm2
StepHypRef Expression
1 df-2o 6516 . . 3 2o = suc 1o
21oveq2i 5968 . 2 (𝐴 ·o 2o) = (𝐴 ·o suc 1o)
3 1onn 6619 . . . 4 1o ∈ ω
4 nnmsuc 6576 . . . 4 ((𝐴 ∈ ω ∧ 1o ∈ ω) → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴))
53, 4mpan2 425 . . 3 (𝐴 ∈ ω → (𝐴 ·o suc 1o) = ((𝐴 ·o 1o) +o 𝐴))
6 nnm1 6624 . . . 4 (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴)
76oveq1d 5972 . . 3 (𝐴 ∈ ω → ((𝐴 ·o 1o) +o 𝐴) = (𝐴 +o 𝐴))
85, 7eqtrd 2239 . 2 (𝐴 ∈ ω → (𝐴 ·o suc 1o) = (𝐴 +o 𝐴))
92, 8eqtrid 2251 1 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  suc csuc 4420  ωcom 4646  (class class class)co 5957  1oc1o 6508  2oc2o 6509   +o coa 6512   ·o comu 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520
This theorem is referenced by:  nn2m  6626
  Copyright terms: Public domain W3C validator