![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2cnm | GIF version |
Description: "Reverse" second Peano postulate analog for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
peano2cnm | ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7967 | . 2 ⊢ 1 ∈ ℂ | |
2 | subcl 8220 | . 2 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 425 | 1 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 1c1 7875 − cmin 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 |
This theorem is referenced by: xp1d2m1eqxm1d2 9238 elnnnn0 9286 hash2iun1dif1 11626 pwm1geoserap1 11654 nn0ob 12052 dveflem 14897 2lgslem1a1 15234 |
Copyright terms: Public domain | W3C validator |