ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem1a1 GIF version

Theorem 2lgslem1a1 15730
Description: Lemma 1 for 2lgslem1a 15732. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Distinct variable group:   𝑃,𝑖

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 elfzelz 10189 . . . . . . 7 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
21adantl 277 . . . . . 6 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑖 ∈ ℤ)
3 2z 9442 . . . . . . 7 2 ∈ ℤ
43a1i 9 . . . . . 6 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℤ)
52, 4zmulcld 9543 . . . . 5 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) ∈ ℤ)
6 zq 9789 . . . . 5 ((𝑖 · 2) ∈ ℤ → (𝑖 · 2) ∈ ℚ)
75, 6syl 14 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) ∈ ℚ)
8 nnq 9796 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
98ad2antrr 488 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℚ)
10 elfznn 10218 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℕ)
11 nnre 9085 . . . . . . 7 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
12 nnnn0 9344 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
1312nn0ge0d 9393 . . . . . . 7 (𝑖 ∈ ℕ → 0 ≤ 𝑖)
14 2re 9148 . . . . . . . . 9 2 ∈ ℝ
15 0le2 9168 . . . . . . . . 9 0 ≤ 2
1614, 15pm3.2i 272 . . . . . . . 8 (2 ∈ ℝ ∧ 0 ≤ 2)
1716a1i 9 . . . . . . 7 (𝑖 ∈ ℕ → (2 ∈ ℝ ∧ 0 ≤ 2))
18 mulge0 8734 . . . . . . 7 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → 0 ≤ (𝑖 · 2))
1911, 13, 17, 18syl21anc 1251 . . . . . 6 (𝑖 ∈ ℕ → 0 ≤ (𝑖 · 2))
2010, 19syl 14 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 0 ≤ (𝑖 · 2))
2120adantl 277 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ (𝑖 · 2))
22 elfz2 10179 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) ↔ ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
23 zre 9418 . . . . . . . . . . 11 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
24233ad2ant3 1025 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℝ)
25 zre 9418 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℤ → ((𝑃 − 1) / 2) ∈ ℝ)
26253ad2ant2 1024 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℝ)
27 2pos 9169 . . . . . . . . . . . 12 0 < 2
2814, 27pm3.2i 272 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
2928a1i 9 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
30 lemul1 8708 . . . . . . . . . 10 ((𝑖 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
3124, 26, 29, 30syl3anc 1252 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
32 nncn 9086 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
33 peano2cnm 8380 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
3432, 33syl 14 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℂ)
35 2cnd 9151 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ∈ ℂ)
36 2ap0 9171 . . . . . . . . . . . . . . . . 17 2 # 0
3736a1i 9 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 # 0)
3834, 35, 37divcanap1d 8906 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3938adantr 276 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
4039adantl 277 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
4140breq2d 4074 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
42 id 19 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
433a1i 9 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 2 ∈ ℤ)
4442, 43zmulcld 9543 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℤ)
45443ad2ant3 1025 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 · 2) ∈ ℤ)
46 nnz 9433 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
4746adantr 276 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℤ)
48 zltlem1 9472 . . . . . . . . . . . . . 14 (((𝑖 · 2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4945, 47, 48syl2an 289 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
5049biimprd 158 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (𝑃 − 1) → (𝑖 · 2) < 𝑃))
5141, 50sylbid 150 . . . . . . . . . . 11 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃))
5251ex 115 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃)))
5352com23 78 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5431, 53sylbid 150 . . . . . . . 8 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5554a1d 22 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (1 ≤ 𝑖 → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))))
5655imp32 257 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5722, 56sylbi 121 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5857impcom 125 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) < 𝑃)
59 modqid 10538 . . . 4 ((((𝑖 · 2) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (𝑖 · 2) ∧ (𝑖 · 2) < 𝑃)) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
607, 9, 21, 58, 59syl22anc 1253 . . 3 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
6160eqcomd 2215 . 2 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
6261ralrimiva 2583 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180  wral 2488   class class class wbr 4062  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   · cmul 7972   < clt 8149  cle 8150  cmin 8285   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  cz 9414  cq 9782  ...cfz 10172   mod cmo 10511  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fl 10457  df-mod 10512
This theorem is referenced by:  2lgslem1a  15732
  Copyright terms: Public domain W3C validator